• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 8, 080606 (2024)
Zhen YANG1,2,3, Zhimin DAI1,*, Zhangzhong YANG3, and Yang ZOU1
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3North-Western China Regional Office of Nuclear and Radiation Saftety Inspection, National Nuclear Safety Administration, Lanzhou 730020, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.080606 Cite this Article
    Zhen YANG, Zhimin DAI, Zhangzhong YANG, Yang ZOU. Criticality safety analysis of nuclear fuel storage of molten salt reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080606 Copy Citation Text show less
    References

    [1] Zhao X C, Zou Y, Yan R et al. Analysis of burnup performance and temperature coefficient for a small modular molten-salt reactor started with plutonium[J]. Nuclear Science and Techniques, 34, 17(2023).

    [2] HUO Yuting, LUO Yan, XIANG Haifei et al. Study on the condensation behavior of the key metal fluorides in molten salts during low-pressure distillation[J]. Nuclear Techniques, 47, 010301(2024).

    [3] ZHOU Tianze, YU Kaicheng, CHENG Maosong et al. Development and analysis of a K-nearest-neighbor-based transient identification model for molten salt reactor systems[J]. Nuclear Techniques, 46, 110604(2023).

    [4] CHEN Shichao, LI Rui, ZUO Xiandi et al. Development and validation of real-time modeling and simulation platform for molten salt reactor, based on EPICS framework[J]. Nuclear Techniques, 46, 110601(2023).

    [5] Yu S H, Liu Y F, Yang P et al. Neutronics analysis for MSR cell with different fuel salt channel geometries[J]. Nuclear Science and Techniques, 32, 9(2021).

    [6] YU Shihe, LIU Yafen, YANG Pu et al. Effect analysis of core structure changes on reactivity in molten salt experimental reactor[J]. Nuclear Techniques, 42, 020603(2019).

    [7] Haubenreich P N, Engel J R. Experience with the molten-salt reactor experiment[J]. Nuclear Applications and Technology, 8, 118-136(1970).

    [8] Yu G P, Cheng Y F, Zhang N et al. Multi-objective optimization and evaluation of supercritical CO2 Brayton cycle for nuclear power generation[J]. Nuclear Science and Techniques, 35, 22(2024).

    [9] He L Y, Cui Y, Chen L et al. Effect of reprocessing on neutrons of a molten chloride salt fast reactor[J]. Nuclear Science and Techniques, 34, 46(2023).

    [10] Wulandari C, Waris A, Permana S et al. Evaluating the JEFF 3.1, ENDF/B-VII.0, JENDL 3.3, and JENDL 4.0 nuclear data libraries for a small 100 MWe molten salt reactor with plutonium fuel[J]. Nuclear Science and Techniques, 33, 165(2022).

    [11] Li X X, Cui D Y, Ma Y W et al. Influence of 235U enrichment on the moderator temperature coefficient of reactivity in a graphite-moderated molten salt reactor[J]. Nuclear Science and Techniques, 30, 166(2019).

    [12] Liu H, Lei G H, Huang H F et al. Review on synergistic damage effect of irradiation and corrosion on reactor structural alloys[J]. Nuclear Science and Techniques, 35, 57(2024).

    [13] Sun G M, Cheng M S. Development of a MCNP5 and ORIGEN2 based burnup code for molten salt reactor[J]. Nuclear Science and Techniques, 27, 65(2016).

    [14] Zhang Z H, Xia X B, Cai J et al. Simulation of radiation dose distribution and thermal analysis for the bulk shielding of an optimized molten salt reactor[J]. Nuclear Science and Techniques, 26, 040603(2015).

    [15] Zhang D, Qiu S, Liu C et al. Steady thermal hydraulic analysis for a molten salt reactor[J]. Nuclear Science and Techniques, 19, 187-192(2008).

    [16] Zhu G F, Yan R, Peng H H et al. Application of Monte Carlo method to calculate the effective delayed neutron fraction in molten salt reactor[J]. Nuclear Science and Techniques, 30, 34(2019).

    [17] Xu H X, Lin J, Zhong Y J et al. Characterization of molten 2LiF–BeF2 salt impregnated into graphite matrix of fuel elements for thorium molten salt reactor[J]. Nuclear Science and Techniques, 30, 74(2019).

    [18] Yu J H, Xu H X, Ye X X et al. Corrosion behavior of pure metals (Ni and Ti) and alloys (316H SS and GH3535) in liquid GaInSn[J]. Nuclear Science and Techniques, 35, 54(2024).

    [19] Huang J L, Jia G B, Han L F et al. Dynamic simulation analysis of molten salt reactor-coupled air-steam combined cycle power generation system[J]. Nuclear Science and Techniques, 35, 30(2024).

    [20] Ai H, Yang X M, Liu H J et al. Study on the corrosion behavior of 316H stainless steel in molten NaCl-KCl-MgCl2 salts with and without purification[J]. Nuclear Science and Techniques, 34, 191(2023).

    [21] WANG Yujiao, QU Yaxin, FU Haiying et al. Separation of rare earth fission products from LiF-BeF2 molten salt by sulfide precipitation[J]. Nuclear Techniques, 47, 010302(2024).

    Zhen YANG, Zhimin DAI, Zhangzhong YANG, Yang ZOU. Criticality safety analysis of nuclear fuel storage of molten salt reactor[J]. NUCLEAR TECHNIQUES, 2024, 47(8): 080606
    Download Citation