• Chinese Journal of Lasers
  • Vol. 50, Issue 15, 1507402 (2023)
Fan Gong1 and Yuxuan Ren2、*
Author Affiliations
  • 1National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 2Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai 200032, China
  • show less
    DOI: 10.3788/CJL221542 Cite this Article Set citation alerts
    Fan Gong, Yuxuan Ren. Advances in Laser Dual‐Trap Optical Tweezers in Single‐Molecule Biophysics[J]. Chinese Journal of Lasers, 2023, 50(15): 1507402 Copy Citation Text show less
    References

    [1] Ashkin A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 24, 156-159(1970).

    [2] Ashkin A, Dziedzic J M, Bjorkholm J E et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 11, 288-290(1986).

    [3] Dufresne E R, Grier D G. Optical tweezer arrays and optical substrates created with diffractive optics[J]. The Review of Scientific Instruments, 69, 1974-1977(1998).

    [4] Zhang Y Q, Min C J, Dou X J et al. Plasmonic tweezers: for nanoscale optical trapping and beyond[J]. Light: Science & Applications, 10, 1-41(2021).

    [5] Zhao X T, Zhao N, Shi Y et al. Optical fiber tweezers: a versatile tool for optical trapping and manipulation[J]. Micromachines, 11, 114(2020).

    [6] Lin L H, Peng X L, Wei X L et al. Thermophoretic tweezers for low-power and versatile manipulation of biological cells[J]. ACS Nano, 11, 3147-3154(2017).

    [7] Ren Y X, Zeng X L, Zhou L M et al. Photonic nanojet mediated backaction of dielectric microparticles[J]. ACS Photonics, 7, 1483-1490(2020).

    [8] Ren Y X, Yip G G K, Zhou L M et al. Hysteresis and balance of backaction force on dielectric particles photothermally mediated by photonic nanojet[J]. Nanophotonics, 11, 4231-4244(2022).

    [9] Ashkin A, Dziedzic J M. Optical trapping and manipulation of viruses and bacteria[J]. Science, 235, 1517-1520(1987).

    [10] Fazal F M, Block S M. Optical tweezers study life under tension[J]. Nature Photonics, 5, 318-321(2011).

    [11] Neuman K C, Block S M. Optical trapping[J]. The Review of Scientific Instruments, 75, 2787-2809(2004).

    [12] Bustamante C J, Chemla Y R, Liu S et al. Optical tweezers in single-molecule biophysics[J]. Nature Reviews Methods Primers, 1, 29(2021).

    [13] Shaevitz J W, Abbondanzieri E A, Landick R et al. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution[J]. Nature, 426, 684-687(2003).

    [14] Galburt E A, Grill S W, Wiedmann A et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner[J]. Nature, 446, 820-823(2007).

    [15] Hoekstra T P, Depken M, Lin S N et al. Switching between exonucleolysis and replication by T7 DNA polymerase ensures high fidelity[J]. Biophysical Journal, 112, 575-583(2017).

    [16] Fitz V, Shin J, Ehrlich C et al. Nucleosomal arrangement affects single-molecule transcription dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 12733-12738(2016).

    [17] Bustamante C, Alexander L, Maciuba K et al. Single-molecule studies of protein folding with optical tweezers[J]. Annual Review of Biochemistry, 89, 443-470(2020).

    [18] Wu W Q, Zhu X H, Song C P. Single-molecule technique: a revolutionary approach to exploring fundamental questions in plant science[J]. The New Phytologist, 223, 508-510(2019).

    [19] Polimeno P, Magazzù A, Iatì M A et al. Optical tweezers and their applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 218, 131-150(2018).

    [20] van Mameren J, Wuite G J L, Heller I. Introduction to optical tweezers: background, system designs, and commercial solutions[J]. Methods in Molecular Biology, 783, 1-20(2011).

    [21] Ashkin A. Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime[J]. Biophysical Journal, 61, 569-582(1992).

    [22] Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Optics Letters, 25, 1065-1067(2000).

    [23] Gordon J P. Radiation forces and momenta in dielectric media[J]. Physical Review A, 8, 14-21(1973).

    [24] Arias-González J R, Nieto-Vesperinas M. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[J]. Journal of the Optical Society of America A, 20, 1201-1209(2003).

    [25] Ladavac K, Kasza K, Grier D G. Sorting mesoscopic objects with periodic potential landscapes: optical fractionation[J]. Physical Review E, 70, 010901R(2004).

    [26] Draine B T, Goodman J. Beyond Clausius-Mossotti wave propagation on a polarizable point lattice and the discrete dipole approximation[J]. The Astrophysical Journal Letters, 405, 685-697(1993).

    [27] Gao D L, Ding W Q, Nieto-Vesperinas M et al. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects[J]. Light: Science & Applications, 6, e17039(2017).

    [28] Albaladejo S, Marqués M I, Laroche M et al. Scattering forces from the curl of the spin angular momentum of a light field[J]. Physical Review Letters, 102, 113602(2009).

    [29] Ruffner D B, Grier D G. Comment on “Scattering forces from the curl of the spin angular momentum of a light field”[J]. Physical Review Letters, 111, 059301(2013).

    [30] Yee K E. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966).

    [31] Levy S. Structural analysis and influence coefficients for delta wings[J]. Journal of the Aeronautical Sciences, 20, 449-454(1953).

    [32] Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 49, 1-23(2012).

    [33] Grehan G, Maheu B, Gouesbet G. Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation[J]. Applied Optics, 25, 3539-3548(1986).

    [34] Li J L W, Ong W L, Zheng K H R. Anisotropic scattering effects of a gyrotropic sphere characterized using the T-matrix method[J]. Physical Review E, 85, 036601(2012).

    [35] Bareil P B, Sheng Y L. Modeling highly focused laser beam in optical tweezers with the vector Gaussian beam in the T-matrix method[J]. Journal of the Optical Society of America A, 30, 1-6(2013).

    [36] Waterman P C. Matrix formulation of electromagnetic scattering[J]. Proceedings of the IEEE, 53, 805-812(1965).

    [37] Gouesbet G. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates[J]. Optics Communications, 283, 517-521(2010).

    [38] Chew W C[M]. Waves and fields in inhomogenous media(1999).

    [39] Jackson J D[M]. Classical electrodynamics(1998).

    [40] Chemla Y R. High-resolution, hybrid optical trapping methods, and their application to nucleic acid processing proteins[J]. Biopolymers, 105, 704-714(2016).

    [41] Yehoshua S, Pollari R, Milstein J. Axial optical traps: a new direction for optical tweezers[J]. Biophysical Journal, 108, 2759-2766(2015).

    [42] Le T T, Gao X, Park S H et al. Synergistic coordination of chromatin torsional mechanics and topoisomerase activity[J]. Cell, 179, 619-631(2019).

    [43] Heller I, Laurens N, Vorselen D et al. Versatile quadruple-trap optical tweezers for dual DNA experiments[J]. Methods in Molecular Biology, 1486, 257-272(2017).

    [44] Moffitt J R, Chemla Y R, Izhaky D et al. Differential detection of dual traps improves the spatial resolution of optical tweezers[J]. Proceedings of the National Academy of Sciences of the United States of America, 103, 9006-9011(2006).

    [45] Heller I, Hoekstra T P, King G A et al. Optical tweezers analysis of DNA-protein complexes[J]. Chemical Reviews, 114, 3087-3119(2014).

    [46] La Porta A, Wang M D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles[J]. Physical Review Letters, 92, 190801(2004).

    [47] Deufel C, Forth S, Simmons C R et al. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection[J]. Nature Methods, 4, 223-225(2007).

    [48] Yang Y J, Ren Y X, Chen M Z et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [49] Svoboda K, Schmidt C F, Schnapp B J et al. Direct observation of kinesin stepping by optical trapping interferometry[J]. Nature, 365, 721-727(1993).

    [50] Avellaneda M J, Franke K B, Sunderlikova V et al. Processive extrusion of polypeptide loops by a Hsp100 disaggregase[J]. Nature, 578, 317-320(2020).

    [51] Sparkes I, White R R, Coles B et al. Using optical tweezers combined with total internal reflection microscopy to study interactions between the ER and Golgi in plant cells[J]. Methods in Molecular Biology, 1691, 167-178(2018).

    [52] Ngo T M, Zhang Q C, Zhou R B et al. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility[J]. Cell, 160, 1135-1144(2015).

    [53] Sirinakis G, Ren Y X, Gao Y et al. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy[J]. The Review of Scientific Instruments, 83, 093708(2012).

    [54] Gittes F, Schmidt C F. Interference model for back-focal-plane displacement detection in optical tweezers[J]. Optics Letters, 23, 7-9(1998).

    [55] Bustamante C, Chemla Y R, Moffitt J R. High-resolution dual-trap optical tweezers with differential detection: managing environmental noise[J]. Cold Spring Harbor Protocols, 2009, 73(2009).

    [56] Bustamante C, Chemla Y R, Moffitt J R. High-resolution dual-trap optical tweezers with differential detection: managing environmental noise[J]. Cold Spring Harbor Protocols, 2009, 72(2009).

    [57] Li P T X, Collin D, Smith S B et al. Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods[J]. Biophysical Journal, 90, 250-260(2006).

    [58] Bustamante C, Smith S B, Liphardt J et al. Single-molecule studies of DNA mechanics[J]. Current Opinion in Structural Biology, 10, 279-285(2000).

    [59] Greenleaf W J, Woodside M T, Abbondanzieri E A et al. Passive all-optical force clamp for high-resolution laser trapping[J]. Physical Review Letters, 95, 208102(2005).

    [60] Ishizuka T, Saisu H, Odani S et al. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals[J]. Biochemical and Biophysical Research Communications, 213, 1107-1114(1995).

    [61] Zhou D D, Ren Y X, Liu W W et al. Calibration of optical tweezers using time of flight method[J]. Acta Physica Sinica, 61, 228702(2012).

    [62] Berg-Sørensen K, Flyvbjerg H. Power spectrum analysis for optical tweezers[J]. The Review of Scientific Instruments, 75, 594-612(2004).

    [63] Ashkin A. The study of cells by optical trapping and manipulation of living cells using infrared laser beams[J]. ASGSB Bulletin, 4, 133-146(1991).

    [64] Marko J F, Siggia E D. Stretching DNA[J]. Macromolecules, 28, 8759-8770(1995).

    [65] Odijk T. Stiff chains and filaments under tension[J]. Macromolecules, 28, 7016-7018(1995).

    [66] Wang M D, Yin H, Landick R et al. Stretching DNA with optical tweezers[J]. Biophysical Journal, 72, 1335-1346(1997).

    [67] Smith S B, Cui Y, Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules[J]. Science, 271, 795-799(1996).

    [68] Ahsan A, Rudnick J, Bruinsma R. Elasticity theory of the B-DNA to S-DNA transition[J]. Biophysical Journal, 74, 132-137(1998).

    [69] Rief M, Clausen-Schaumann H, Gaub H E. Sequence-dependent mechanics of single DNA molecules[J]. Nature Structural Biology, 6, 346-349(1999).

    [70] Hegner M, Smith S B, Bustamante C. Polymerization and mechanical properties of single RecA-DNA filaments[J]. Proceedings of the National Academy of Sciences of the United States of America, 96, 10109-10114(1999).

    [71] Hartl F U. Protein misfolding diseases[J]. Annual Review of Biochemistry, 86, 21-26(2017).

    [72] Cecconi C, Shank E A, Bustamante C et al. Direct observation of the three-state folding of a single protein molecule[J]. Science, 309, 2057-2060(2005).

    [73] Yu H, Dee D R, Liu X et al. Protein misfolding occurs by slow diffusion across multiple barriers in a rough energy landscape[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 8308-8313(2015).

    [74] Yu H, Liu X, Neupane K et al. Direct observation of multiple misfolding pathways in a single prion protein molecule[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 5283-5288(2012).

    [75] Johnson S M, Wiseman R L, Sekijima Y et al. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses[J]. Accounts of Chemical Research, 38, 911-921(2005).

    [76] Post K, Pitschke M, Schäfer O et al. Rapid acquisition of beta-sheet structure in the prion protein prior to multimer formation[J]. Biological Chemistry, 379, 1307-1317(1998).

    [77] Tompa P, Tusnády G E, Friedrich P et al. The role of dimerization in prion replication[J]. Biophysical Journal, 82, 1711-1718(2002).

    [78] Yu H, Gupta A N, Liu X et al. Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 14452-14457(2012).

    [79] Neupane K, Ritchie D B, Yu H et al. Transition path times for nucleic acid folding determined from energy-landscape analysis of single-molecule trajectories[J]. Physical Review Letters, 109, 068102(2012).

    [80] Kaiser C M, Goldman D H, Chodera J D et al. The ribosome modulates nascent protein folding[J]. Science, 334, 1723-1727(2011).

    [81] Maciuba K, Zhang F, Kaiser C M. Facile tethering of stable and unstable proteins for optical tweezers experiments[J]. Biophysical Journal, 120, 2691-2700(2021).

    [82] Liu K X, Maciuba K, Kaiser C M. The ribosome cooperates with a chaperone to guide multi-domain protein folding[J]. Molecular Cell, 74, 310-319(2019).

    [83] Liu K X, Rehfus J E, Mattson E et al. The ribosome destabilizes native and non-native structures in a nascent multidomain protein[J]. Protein Science: a Publication of the Protein Society, 26, 1439-1451(2017).

    [84] Liu K X, Chen X Q, Kaiser C M. Energetic dependencies dictate folding mechanism in a complex protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 25641-25648(2019).

    [85] Cabrita L D, Cassaignau A M E, Launay H M M et al. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding[J]. Nature Structural & Molecular Biology, 23, 278-285(2016).

    [86] Knight A M, Culviner P H, Kurt-Yilmaz N et al. Electrostatic effect of the ribosomal surface on nascent polypeptide dynamics[J]. ACS Chemical Biology, 8, 1195-1204(2013).

    [87] Samelson A J, Jensen M K, Soto R A et al. Quantitative determination of ribosome nascent chain stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 13402-13407(2016).

    [88] Abbondanzieri E A, Greenleaf W J, Shaevitz J W et al. Direct observation of base-pair stepping by RNA polymerase[J]. Nature, 438, 460-465(2005).

    [89] Gabizon R, Lee A, Vahedian-Movahed H et al. Pause sequences facilitate entry into long-lived paused states by reducing RNA polymerase transcription rates[J]. Nature Communications, 9, 1-10(2018).

    [90] Adelman K, La Porta A, Santangelo T J et al. Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior[J]. Proceedings of the National Academy of Sciences of the United States of America, 99, 13538-13543(2002).

    [91] Bintu L, Ishibashi T, Dangkulwanich M et al. Nucleosomal elements that control the topography of the barrier to transcription[J]. Cell, 151, 738-749(2012).

    [92] Lisica A, Engel C, Jahnel M et al. Mechanisms of backtrack recovery by RNA polymerases I and II[J]. Proceedings of the National Academy of Sciences of the United States of America, 113, 2946-2951(2016).

    [93] Mohapatra S, Lin C T, Feng X A et al. Single-molecule analysis and engineering of DNA motors[J]. Chemical Reviews, 120, 36-78(2020).

    [94] Kolomeisky A B. Motor proteins and molecular motors: how to operate machines at the nanoscale[J]. Journal of Physics. Condensed Matter, 25, 463101(2013).

    [95] Dillingham M S. Superfamily I helicases as modular components of DNA-processing machines[J]. Biochemical Society Transactions, 39, 413-423(2011).

    [96] Lohman T M, Chao K, Green J M et al. Large-scale purification and characterization of the Escherichia coli Rep gene product[J]. The Journal of Biological Chemistry, 264, 10139-10147(1989).

    [97] Korolev S, Hsieh J, Gauss G H et al. Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP[J]. Cell, 90, 635-647(1997).

    [98] Chao K, Lohman T M. DNA-induced dimerization of the Escherichia coli Rep helicase[J]. Journal of Molecular Biology, 221, 1165-1181(1991).

    [99] Bjornson K P, Moore K J, Lohman T M. Kinetic mechanism of DNA binding and DNA-induced dimerization of the Escherichia coli Rep helicase[J]. Biochemistry, 35, 2268-2282(1996).

    [100] Comstock M J, Whitley K D, Jia H F et al. Direct observation of structure-function relationship in a nucleic acid-processing enzyme[J]. Science, 348, 352-354(2015).

    [101] Arslan S, Khafizov R, Thomas C D et al. Engineering of a superhelicase through conformational control[J]. Science, 348, 344-347(2015).

    [102] Brendza K M, Cheng W, Fischer C J et al. Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain[J]. Proceedings of the National Academy of Sciences of the United States of America, 102, 10076-10081(2005).

    [103] Makurath M A, Whitley K D, Nguyen B et al. Regulation of Rep helicase unwinding by an auto-inhibitory subdomain[J]. Nucleic Acids Research, 47, 2523-2532(2019).

    [104] Dessinges M N, Lionnet T, Xi X G et al. Single-molecule assay reveals strand switching and enhanced processivity of UvrD[J]. Proceedings of the National Academy of Sciences of the United States of America, 101, 6439-6444(2004).

    [105] Liu S X, Chistol G, Hetherington C et al. A viral packaging motor varies its DNA rotation and step size to preserve subunit coordination as the capsid fills[J]. Cell, 157, 702-713(2014).

    [106] Bustamante C, Chemla Y R, Forde N R et al. Mechanical processes in biochemistry[J]. Annual Review of Biochemistry, 73, 705-748(2004).

    [107] Iyer L M, Leipe D D, Koonin E V et al. Evolutionary history and higher order classification of AAA+ ATPases[J]. Journal of Structural Biology, 146, 11-31(2004).

    [108] Erzberger J P, Berger J M. Evolutionary relationships and structural mechanisms of AAA+ proteins[J]. Annual Review of Biophysics and Biomolecular Structure, 35, 93-114(2006).

    [109] Moffitt J R, Chemla Y R, Aathavan K et al. Intersubunit coordination in a homomeric ring ATPase[J]. Nature, 457, 446-450(2009).

    [110] Chistol G, Liu S X, Hetherington C et al. High degree of coordination and division of labor among subunits in a homomeric ring ATPase[J]. Cell, 151, 1017-1028(2012).

    [111] Hao T R, Feng N, Gong F et al. Complexin-1 regulated assembly of single neuronal SNARE complex revealed by single-molecule optical tweezers[J]. Communications Biology, 6, 1-12(2023).

    [112] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 121, 501-502(1928).

    [113] Canetta E. Current and future advancements of Raman spectroscopy techniques in cancer nanomedicine[J]. International Journal of Molecular Sciences, 22, 13141(2021).

    [114] Lambert P J, Whitman A G, Dyson O F et al. Raman spectroscopy: the gateway into tomorrow’s virology[J]. Virology Journal, 3, 51(2006).

    [115] Kneipp K, Kneipp H, Corio P et al. Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes[J]. Physical Review Letters, 84, 3470-3473(2000).

    [116] Li Y P, Shen B L, Li S W et al. Review of stimulated Raman scattering microscopy techniques and applications in the biosciences[J]. Advanced Biology, 5, e2000184(2021).

    [117] Gala de Pablo J, Lindley M, Hiramatsu K et al. High-throughput Raman flow cytometry and beyond[J]. Accounts of Chemical Research, 54, 2132-2143(2021).

    [118] Ajito K, Torimitsu K. Single nanoparticle trapping using a Raman tweezers microscope[J]. Applied Spectroscopy, 56, 541-544(2002).

    [119] Xie C G, Dinno M A, Li Y Q. Near-infrared Raman spectroscopy of single optically trapped biological cells[J]. Optics Letters, 27, 249-251(2002).

    [120] Kong L B, Zhang P F, Setlow P et al. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers[J]. Analytical Chemistry, 82, 3840-3847(2010).

    [121] Lankers M, Popp J, Kiefer W. Raman and fluorescence spectra of single optically trapped microdroplets in emulsions[J]. Applied Spectroscopy, 48, 1166-1168(1994).

    [122] Creely C, Volpe G, Singh G et al. Raman imaging of floating cells[J]. Optics Express, 13, 6105-6110(2005).

    [123] Singh Y, Chowdhury A, Dasgupta R et al. The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap[J]. European Biophysics Journal, 50, 867-876(2021).

    [124] Singh Y, Chowdhury A, Mukherjee C et al. Simultaneous photoreduction and Raman spectroscopy of red blood cells to investigate the effects of organophosphate exposure[J]. Journal of Biophotonics, 12, e201800246(2019).

    [125] Moritz T J, Taylor D S, Krol D M et al. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy[J]. Biomedical Optics Express, 1, 1138-1147(2010).

    [126] Ojeda J F, Xie C G, Li Y Q et al. Chromosomal analysis and identification based on optical tweezers and Raman spectroscopy[J]. Optics Express, 14, 5385-5393(2006).

    [127] Tang H Y, Yao H L, Wang G W et al. NIR Raman spectroscopic investigation of single mitochondria trapped by optical tweezers[J]. Optics Express, 15, 12708-12716(2007).

    [128] Ling L, Li Y Q. Measurement of Raman spectra of single airborne absorbing particles trapped by a single laser beam[J]. Optics Letters, 38, 416-418(2013).

    [129] Lin M M, Ou H S, Zhang P et al. Laser tweezers Raman spectroscopy combined with machine learning for diagnosis of Alzheimer’s disease[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 280, 121542(2022).

    [130] Tian X C, Chen C, Chen C et al. Application of Raman spectroscopy technology based on deep learning algorithm in the rapid diagnosis of glioma[J]. Journal of Raman Spectroscopy, 53, 735-745(2022).

    [131] Qiu S F, Li M M, Liu J et al. Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy[J]. Biomedical Optics Express, 11, 1819-1833(2020).

    [132] Li Y, Wang G W, Yao H L et al. Dual-trap Raman tweezers for probing dynamics and heterogeneity of interacting microbial cells[J]. Journal of Biomedical Optics, 15, 067008(2010).

    [133] Zhang P F, Kong L B, Setlow P et al. Characterization of wet-heat inactivation of single spores of bacillus species by dual-trap Raman spectroscopy and elastic light scattering[J]. Applied and Environmental Microbiology, 76, 1796-1805(2010).

    [134] Rao S, Bálint Š, Cossins B et al. Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers[J]. Biophysical Journal, 96, 209-216(2009).

    [135] Creely C M, Singh G P, Petrov D. Dual wavelength optical tweezers for confocal Raman spectroscopy[J]. Optics Communications, 245, 465-470(2005).

    [136] Rusciano G. Experimental analysis of Hb oxy-deoxy transition in single optically stretched red blood cells[J]. Physica Medica, 26, 233-239(2010).

    [137] Comstock M J, Ha T, Chemla Y R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity[J]. Nature Methods, 8, 335-340(2011).

    [138] Whitley K D, Comstock M J, Chemla Y R. High-resolution “fleezers”: dual-trap optical tweezers combined with single-molecule fluorescence detection[M]. Optical tweezers, 183-256(2017).

    [139] Lee K S, Balci H, Jia H F et al. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA[J]. Nature Communications, 4, 1-9(2013).

    [140] van Mameren J, Modesti M, Kanaar R et al. Counting RAD51 proteins disassembling from nucleoprotein filaments under tension[J]. Nature, 457, 745-748(2009).

    [141] Desai V P, Frank F, Lee A et al. Co-temporal force and fluorescence measurements reveal a ribosomal gear shift mechanism of translation regulation by structured mRNAs[J]. Molecular Cell, 75, 1007-1019(2019).

    [142] Ishijima A, Kojima H, Funatsu T et al. Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin[J]. Cell, 92, 161-171(1998).

    [143] van Mameren J, Modesti M, Kanaar R et al. Dissecting elastic heterogeneity along DNA molecules coated partly with Rad51 using concurrent fluorescence microscopy and optical tweezers[J]. Biophysical Journal, 91, L78-L80(2006).

    [144] Suksombat S, Khafizov R, Kozlov A G et al. Structural dynamics of E. coli single-stranded DNA binding protein reveal DNA wrapping and unwrapping pathways[J]. eLife, 4, e08193(2015).

    [145] Hohng S, Zhou R B, Nahas M K et al. Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction[J]. Science, 318, 279-283(2007).

    [146] Zhou R B, Kozlov A, Roy R et al. SSB functions as a sliding platform that migrates on DNA via reptation[J]. Cell, 146, 222-232(2011).

    [147] Heller I, Sitters G, Broekmans O D et al. STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA[J]. Nature Methods, 10, 910-916(2013).

    [148] Roy D, Steinkühler J, Zhao Z L et al. Mechanical tension of biomembranes can be measured by super resolution (STED) microscopy of force-induced nanotubes[J]. Nano Letters, 20, 3185-3191(2020).

    [149] Kolbow J D, Lindquist N C, Ertsgaard C T et al. Nano-optical tweezers: methods and applications for trapping single molecules and nanoparticles[J]. Chemphyschem, 22, 1409-1420(2021).

    [150] Choudhary D, Mossa A, Jadhav M et al. Bio-molecular applications of recent developments in optical tweezers[J]. Biomolecules, 9, 23(2019).

    [151] Min C J, Shen Z, Shen J F et al. Focused plasmonic trapping of metallic particles[J]. Nature Communications, 4, 1-7(2013).

    [152] Moh K J, Yuan X C, Bu J et al. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams[J]. Optics Express, 16, 20734-20741(2008).

    [153] Moh K J, Yuan X C, Bu J et al. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy[J]. Optics Letters, 34, 971-973(2009).

    [154] Zhan Q W. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam[J]. Optics Letters, 31, 1726-1728(2006).

    [155] Zhang W H, Huang L N, Santschi C et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Letters, 10, 1006-1011(2010).

    [156] Juan M L, Righini M, Quidant R. Plasmon nano-optical tweezers[J]. Nature Photonics, 5, 349-356(2011).

    [157] Roxworthy B J, Ko K D, Kumar A et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting[J]. Nano Letters, 12, 796-801(2012).

    [158] Juan M L, Gordon R, Pang Y J et al. Self-induced back-action optical trapping of dielectric nanoparticles[J]. Nature Physics, 5, 915-919(2009).

    [159] Pang Y J, Gordon R. Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film[J]. Nano Letters, 11, 3763-3767(2011).

    [160] Righini M, Ghenuche P, Cherukulappurath S et al. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas[J]. Nano Letters, 9, 3387-3391(2009).

    [161] Pang Y J, Gordon R. Optical trapping of a single protein[J]. Nano Letters, 12, 402-406(2012).

    [162] Kotnala A, Gordon R. Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins[J]. Biomedical Optics Express, 5, 1886-1894(2014).

    [163] Al Balushi A A, Gordon R. A label-free untethered approach to single-molecule protein binding kinetics[J]. Nano Letters, 14, 5787-5791(2014).

    [164] Chen L, Liu W, Shen D Y et al. Label-free plasmonic assisted optical trapping of single DNA molecules[J]. Optics Letters, 46, 1482-1485(2021).

    [165] Zhong M C, Wei X B, Zhou J H et al. Trapping red blood cells in living animals using optical tweezers[J]. Nature Communications, 4, 1-7(2013).

    [166] Johansen P L, Fenaroli F, Evensen L et al. Optical micromanipulation of nanoparticles and cells inside living zebrafish[J]. Nature Communications, 7, 1-8(2016).

    [167] Anand R, Buechelmaier E, Belan O et al. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51[J]. Nature, 601, 268-273(2022).

    [168] Newton M D, Taylor B J, Driessen R P C et al. DNA stretching induces Cas9 off-target activity[J]. Nature Structural & Molecular Biology, 26, 185-192(2019).

    [169] Kono S, van den Berg A, Simonetta M et al. Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies[J]. Proceedings of the National Academy of Sciences of the United States of America, 119, e2116218119(2022).

    [170] Lyon A S, Peeples W B, Rosen M K. A framework for understanding the functions of biomolecular condensates across scales[J]. Nature Reviews Molecular Cell Biology, 22, 215-235(2021).

    [171] Sharp P A, Chakraborty A K, Henninger J E et al. RNA in formation and regulation of transcriptional condensates[J]. RNA, 28, 52-57(2022).

    Fan Gong, Yuxuan Ren. Advances in Laser Dual‐Trap Optical Tweezers in Single‐Molecule Biophysics[J]. Chinese Journal of Lasers, 2023, 50(15): 1507402
    Download Citation