[1] B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).
[2] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Li–O–2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).
[3] Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).
[4] B.L. Ellis, K.T. Lee, L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).
[5] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).
[6] R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015).
[7] A. Manthiram, Y. Fu, Y.-S. Su, Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2013).
[8] Q. Lu, Y. Jie, X. Meng, A. Omar, D. Mikhailova et al., Carbon materials for stable li metal anodes: challenges, solutions, and outlook. Carbon Energy 3, 957–975 (2021).
[9] L. Zeng, J. Zhu, P.K. Chu, L. Huang, J. Wang et al., Catalytic effects of electrodes and electrolytes in metal-sulfur batteries: progress and prospective. Adv. Mater. 34, e2204636 (2022).
[10] S. Evers, L.F. Nazar, New approaches for high energy density lithium–sulfur battery cathodes. Acc. Chem. Res. 46, 1135–1143 (2013).
[11] X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive mxene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015).
[12] Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang et al., Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 8, 14627 (2017).
[13] J. Song, T. Xu, M.L. Gordin, P. Zhu, D. Lv et al., Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2014).
[14] J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 14, 963–965 (2002).
[15] S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016).
[16] Z.A. Ghazi, X. He, A.M. Khattak, N.A. Khan, B. Liang et al., MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 29, 1606817 (2017).
[17] Z. Xiao, Z. Yang, L. Wang, H. Nie, M.E. Zhong et al., A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv. Mater. 27, 2891–2898 (2015).
[18] Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing mwcnt interlayer. Chem. Commun. 48, 8817–8819 (2012).
[19] S. Zhang, K. Ueno, K. Dokko, M. Watanabe, Recent advances in electrolytes for lithium–sulfur batteries. Adv. Energy Mater. 5, 1500117 (2015).
[20] H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).
[21] X. Liang, Z. Wen, Y. Liu, M. Wu, J. Jin et al., Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J. Power. Sources 196, 9839–9843 (2011).
[22] R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew. Chem. Int. Ed. 56, 7764–7768 (2017).
[23] X.-B. Cheng, T.-Z. Hou, R. Zhang, H.-J. Peng, C.-Z. Zhao et al., Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 28, 2888–2895 (2016).
[24] Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu et al., Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. 113, 2862–2867 (2016).
[25] N.-W. Li, Y. Shi, Y.-X. Yin, X.-X. Zeng, J.-Y. Li et al., A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).
[26] G. Zhou, F. Li, H.-M. Cheng, Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 7, 1307–1338 (2014).
[27] H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li et al., Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011).
[28] L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 133, 18522–18525 (2011).
[29] Z. Wang, Y. Dong, H. Li, Z. Zhao, H. Bin Wu et al., Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun. 5, 5002 (2014).
[30] H. Liu, X.X. Liu, W. Li, X. Guo, Y. Wang et al., Porous carbon composites for next generation rechargeable lithium batteries. Adv. Energy Mater. 7, 1700283 (2017).
[31] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang et al., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 6, 7436 (2015).
[32] C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
[33] Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013).
[34] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
[35] R. Fang, S. Zhao, Z. Sun, D.-W. Wang, H.-M. Cheng et al., More reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater. 29, 1606823 (2017).
[36] Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the li/s battery system. J. Electrochem. Soc. 151, A1969 (2004).
[37] S.S. Zhang, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power. Sources 231, 153–162 (2013).
[38] Z. Yuan, H.-J. Peng, T.-Z. Hou, J.-Q. Huang, C.-M. Chen et al., Powering lithium–sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 16, 519–527 (2016).
[39] N. Jayaprakash, J. Shen, S.S. Moganty, A. Corona, L.A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem. Int. Ed. 50, 5904–5908 (2011).
[40] F. Cheng, J. Liang, Z. Tao, J. Chen, Functional materials for rechargeable batteries. Adv. Mater. 23, 1695–1715 (2011).
[41] X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li–S batteries. Energy Storage Mater. 24, 644–654 (2020).
[42] J.P. Paraknowitsch, A. Thomas, Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013).
[43] J.J. Huo, X.J. Cao, Y.P. Tian, L. Li, J.P. Qu et al., Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 15, 5448–5457 (2023).
[44] Z. Li, Q. Zhang, L. Hencz, J. Liu, P. Kaghazchi et al., Multifunctional cation-vacancy-rich ZnCo2O4 polysulfide-blocking layer for ultrahigh-loading Li–S battery. Nano Energy 89, 106331 (2021).
[45] P. Wang, B. Xi, M. Huang, W. Chen, J. Feng et al., Emerging catalysts to promote kinetics of lithium–sulfur batteries. Adv. Energy Mater. 11, 2002893 (2021).
[46] S. Tian, Q. Zeng, G. Liu, J. Huang, X. Sun et al., Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium–sulfur battery. Nano-Micro Lett. 14, 196 (2022).
[47] Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang et al., Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries. Nano Energy 86, 106111 (2021).
[48] P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng et al., Atomic tungsten on graphene with unique coordination enabling kinetically boosted lithium-sulfur batteries. Angew. Chem. Int. Ed. 60, 15563–15571 (2021).
[49] Q. Pang, D. Kundu, M. Cuisinier, L.F. Nazar, Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nat. Commun. 5, 4759 (2014).
[50] Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).
[51] X.-B. Cheng, R. Zhang, C.-Z. Zhao, F. Wei, J.-G. Zhang et al., A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1500213 (2016).
[52] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou et al., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).
[53] H. Yang, C. Guo, J. Chen, A. Naveed, J. Yang et al., An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem. Int. Ed. 58, 791–795 (2019).
[54] X. Cao, X. Ren, L. Zou, M.H. Engelhard, W. Huang et al., Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).
[55] L. Suo, Y.-S. Hu, H. Li, M. Armand, L. Chen, A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).
[56] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al., High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
[57] Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).
[58] J. Zheng, X. Fan, G. Ji, H. Wang, S. Hou et al., Manipulating electrolyte and solid electrolyte interphase to enable safe and efficient Li–S batteries. Nano Energy 50, 431–440 (2018).
[59] A. Abouimrane, D. Dambournet, K.W. Chapman, P.J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. J. Am. Chem. Soc. 134, 4505–4508 (2012).
[60] B.D. Adams, E.V. Carino, J.G. Connell, K.S. Han, R. Cao et al., Long term stability of Li–S batteries using high concentration lithium nitrate electrolytes. Nano Energy 40, 607–617 (2017).
[61] Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss et al., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).
[62] X. Li, J. Zheng, X. Ren, M.H. Engelhard, W. Zhao et al., Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Adv. Energy Mater. 8, 1703022 (2018).
[63] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy 2, 17102 (2017).
[64] X. Liu, Y. Li, X. Xu, L. Zhou, L. Mai, Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances. J. Energy Chem. 61, 104–134 (2021).
[65] H.J. Peng, J.Q. Huang, X.B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017).
[66] A. Manthiram, S.-H. Chung, C. Zu, Lithium–sulfur batteries: progress and prospects. Adv. Mater. 27, 1980–2006 (2015).
[67] X. Ji, L.F. Nazar, Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).
[68] D. Bresser, S. Passerini, B. Scrosati, Recent progress and remaining challenges in sulfur-based lithium secondary batteries–a review. Chem. Commun. 49, 10545–10562 (2013).
[69] H. Pan, Z.B. Cheng, Z.Y. Zhou, S.J. Xie, W. Zhang et al., Boosting lean electrolyte lithium-sulfur battery performance with transition metals: a comprehensive review. Nano-Micro Lett. 15, 165 (2023).
[70] Z. Bai, Z. Wang, R. Li, Z. Wu, P. Feng et al., Engineering triple-phase interfaces enabled by layered double perovskite oxide for boosting polysulfide redox conversion. Nano Lett. 23, 4908–4915 (2023).
[71] X. Li, L. Yuan, D. Liu, J. Xiang, Z. Li et al., Solid/quasi-solid phase conversion of sulfur in lithium–sulfur battery. Small 18, 2106970 (2022).
[72] M.L. Para, C.A. Calderón, S. Drvarič Talian, F. Fischer, G.L. Luque et al., Extending the conversion rate of sulfur infiltrated into microporous carbon in carbonate electrolytes. Batter. Supercaps 5, e202100374 (2022).
[73] X. Li, D.Z. Liu, Z.Y. Cao, Y.Q. Liao, Z.X. Cheng et al., Uncovering the solid-phase conversion mechanism via a new range of organosulfur polymer composite cathodes for lithium-sulfur batteries. J. Energy Chem. 84, 459–466 (2023).
[74] Z. Li, L. Yuan, Z. Yi, Y. Sun, Y. Liu et al., Insight into the electrode mechanism in lithium-sulfur batteries with ordered microporous carbon confined sulfur as the cathode. Adv. Energy Mater. 4, 1301473 (2014).
[75] S. Xin, L. Gu, N.H. Zhao, Y.X. Yin, L.J. Zhou et al., Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 134, 18510–18513 (2012).
[76] G.Y.J. Chmiola, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).
[77] H. Maria Joseph, M. Fichtner, A.R. Munnangi, Perspective on ultramicroporous carbon as sulphur host for Li–S batteries. J. Energy Chem. 59, 242–256 (2021).
[78] S.S. Zhang, Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 7(7), 4588–4600 (2014).
[79] W. Wang, Z. Cao, G.A. Elia, Y. Wu, W. Wahyudi et al., Recognizing the mechanism of sulfurized polyacrylonitrile cathode materials for Li–S batteries and beyond in Al–S batteries. ACS Energy Lett. 3, 2899–2907 (2018).
[80] J.J. Ma, G.R. Xu, Y.C. Li, C.Y. Ge, X.B. Li, An in situ chemically and physically confined sulfur-polymer composite for lithium-sulfur batteries with carbonate-based electrolytes. Chem. Commun. 54, 14093–14096 (2018).
[81] Y. Yi, W. Huang, X. Tian, B. Fang, Z. Wu et al., Graphdiyne-like porous organic framework as a solid-phase sulfur conversion cathodic host for stable Li–S batteries. ACS Appl. Mater. Interfaces 13, 59983–59992 (2021).
[82] H. Ye, L. Ma, Y. Zhou, L. Wang, N. Han et al., Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li–S and Na-S batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 13091–13096 (2017).
[83] Q. Fan, X. Lv, J. Lu, W. Guo, Y. Fu, Dynamic phase evolution of MoS3 accompanied by organodiselenide mediation enables enhanced performance rechargeable lithium battery. Proc. Natl. Acad. Sci. U.S.A. 120, e2219395120 (2023).
[84] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).
[85] C.F. Zhang, H.B. Wu, C.Z. Yuan, Z.P. Guo, X.W. Lou, Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew. Chem. Int. Ed. 51, 9592–9595 (2012).
[86] B. He, Z. Rao, Z. Cheng, D. Liu, D. He et al., Rationally design a sulfur cathode with solid-phase conversion mechanism for high cycle-stable Li–S batteries. Adv. Energy Mater. 11, 2003690 (2021).
[87] Y. Yang, G. Zheng, Y. Cui, Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018–3032 (2013).
[88] Y. Huang, L. Lin, Y. Zhang, L. Liu, B. Sa et al., Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li–S full batteries. Nano-Micro Lett. 15, 67 (2023).
[89] Y. Wu, M. Yang, S. Wang, S. Hou, Y. Zou et al., Sulfur-rich polymer/ketjen black composites as lithium-sulfur battery cathode with high cycling stability. J. Alloys Compd. 962, 171177 (2023).
[90] X. Liu, Q. Guo, Y. Li, Y. Ma, X. Ma et al., “Wane and wax” strategy: enhanced evolution kinetics of liquid phase Li2S4 to Li2S via mutually embedded cnt sponge/ni-porous carbon electrocatalysts. J. Colloid Interface Sci. 649, 481–491 (2023).
[91] Z. Kong, H. Xu, G. Xu, S. Jin, Y. Tong et al., Cobalt nanoparticles & nitrogen-doped carbon nanotubes@hollow carbon with high catalytic ability for high-performance lithium sulfur batteries. J. Colloid Interface Sci. 648, 846–854 (2023).
[92] J.M. Park, S.H. Baek, W.I. Kim, S.J. Lee, G.S. Gund et al., Hierarchical hybrid architecture of carbon nanotube branches grown onto steam activated-reduced graphene oxide/Ni nanoparticle for lithium-sulfur battery cathode. Electrochim. Acta 462, 142750 (2023).
[93] H. Cheng, Z. Shen, W. Liu, M. Luo, F. Huo et al., Vanadium intercalation into niobium disulfide to enhance the catalytic activity for lithium–sulfur batteries. ACS Nano 17, 14695–14705 (2023).
[94] Y. Jiang, S. Liu, X. Gao, G. Li, Morphology control of Li2S deposition via geometrical effect of cobalt-edged nickel alloy to improve performance of lithium–sulfur batteries. Adv. Funct. Mater. (2023).
[95] X. Du, C. Wen, Y. Luo, D. Luo, T. Yang et al., Manipulating redox kinetics using p-n heterojunction biservice matrix as both cathode sulfur immobilizer and anode lithium stabilizer for practical lithium–sulfur batteries. Small (2023).
[96] C. Huang, J. Yu, C. Li, Z.B. Cui, C.Q. Zhang et al., Combined defect and heterojunction engineering in ZnTe/CoTe2@NC sulfur hosts toward robust lithium-sulfur batteries. Adv. Funct. Mater. (2023).
[97] W. Shen, P. Li, Q. Zhang, E. Han, G. Gu et al., The structural and electronic engineering of molybdenum disulfide nanosheets as carbon-free sulfur hosts for boosting energy density and cycling life of lithium–sulfur batteries. Small (2023).
[98] W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao et al., Bronze TiO2 as a cathode host for lithium-sulfur batteries. J. Energy Chem. 48, 259–266 (2020).
[99] H.-E. Wang, K. Yin, X. Zhao, N. Qin, Y. Li et al., Coherent TiO2/BaTiO3 heterostructure as a functional reservoir and promoter for polysulfide intermediates. Chem. Commun. 54, 12250–12253 (2018).
[100] R. Zhe, T. Zhu, X. Wei, Y. Ren, C. Qing et al., Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries. J. Mater. Chem. A 10, 24422–24433 (2022).
[101] Q. Zhao, X. Bao, L. Meng, S. Dong, Y. Zhang et al., Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium-sulfur batteries with enhanced kinetics and cyclability. J. Colloid Interface Sci. 644, 546–555 (2023).
[102] J. Li, H. Zhang, L. Luo, H. Li, J. He et al., Blocking polysulfides with a janus Fe3C/n–CNF@RGO electrode via physiochemical confinement and catalytic conversion for high-performance lithium–sulfur batteries. J. Mater. Chem. A 9, 2205–2213 (2021).
[103] G. Zheng, Y. Yang, J.J. Cha, S.S. Hong, Y. Cui, Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11, 4462–4467 (2011).
[104] P.T. Cunningham, S.A. Johnson, E.J. Cairns, Phase equilibria in lithium-chalcogen systems: Ii. Lithium-sulfur. J. Electrochem. Soc. 119, 1448 (1972).
[105] J. Schuster, G. He, B. Mandlmeier, T. Yim, K.T. Lee et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium–sulfur batteries. Angew. Chem. Int. Ed. 51, 3591–3595 (2012).
[106] G. He, X. Ji, L. Nazar, High “c” rate Li–S cathodes: sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4, 2878 (2011).
[107] A.D. Roberts, X. Li, H. Zhang, Hierarchically porous sulfur-containing activated carbon monoliths via ice-templating and one-step pyrolysis. Carbon 95, 268–278 (2015).
[108] J. Guo, Y. Xu, C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 11, 4288–4294 (2011).
[109] H.-J. Peng, J.-Q. Huang, M.-Q. Zhao, Q. Zhang, X.-B. Cheng et al., Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries. Adv. Funct. Mater. 24, 2772–2781 (2014).
[110] B. Zhang, X. Qin, G.R. Li, X.P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ. Sci. 3, 1531–1537 (2010).
[111] Z.H. Dong, X.Y. Lai, J.E. Halpert, N.L. Yang, L.X. Yi et al., Accurate control of multishelled ZnO hollow microspheres for dye-sensitized solar cells with high efficiency. Adv. Mater. 24, 1046–1049 (2012).
[112] X.Y. Lai, J. Li, B.A. Korgel, Z.H. Dong, Z.M. Li et al., General synthesis and gas-sensing properties of multiple-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 50, 2738–2741 (2011).
[113] G. Zhou, Y. Zhao, A. Manthiram, Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Adv. Energy Mater. 5, 1402263 (2015).
[114] W. Xia, A. Mahmood, R. Zou, Q. Xu, Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).
[115] J. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta et al., Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019).
[116] J. Zheng, J. Tian, D. Wu, M. Gu, W. Xu et al., Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Lett. 14, 2345–2352 (2014).
[117] P. Zeng, H. Yu, X. Zhou, Z. Zhou, B. Li et al., Creating anion defects on hollow coxni1-xo concave with dual binding sites as high-efficiency sulfur reduction reaction catalyst. Chem. Eng. J. 427, 132024 (2022).
[118] R. Zhu, W.Q. Zheng, R. Yan, M. Wu, H.J. Zhou et al., Modulating bond interactions and interface microenvironments between polysulfide and catalysts toward advanced metal-sulfur batteries. Adv. Funct. Mater. (2022).
[119] B. Wang, Y. Ren, Y. Zhu, S. Chen, S. Chang et al., Construction of Co3O4/ZnO heterojunctions in hollow n-doped carbon nanocages as microreactors for lithium-sulfur full batteries. Adv. Sci. 10, e2300860 (2023).
[120] H. Liu, X. Yang, B. Jin, M. Cui, Y. Li et al., Coordinated immobilization and rapid conversion of polysulfide enabled by a hollow metal oxide/sulfide/nitrogen-doped carbon heterostructure for long-cycle-life lithium-sulfur batteries. Small (2023).
[121] Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).
[122] W.J. Chung, J.J. Griebel, E.T. Kim, H. Yoon, A.G. Simmonds et al., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).
[123] Z. Sun, M. Xiao, S. Wang, D. Han, S. Song et al., Sulfur-rich polymeric materials with semi-interpenetrating network structure as a novel lithium–sulfur cathode. J. Mater. Chem. A 2, 9280–9286 (2014).
[124] Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti et al., Embedding cobalt atom clusters in CNT-wired MoS(2) tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries. Small 17, e2102710 (2021).
[125] J. Liu, M. Zhu, Z. Shen, T. Han, T. Si et al., A polysulfides-confined all-in-one porous microcapsule lithium-sulfur battery cathode. Small 17, e2103051 (2021).
[126] J. Xu, H. Tang, S. Cao, X. Chen, Z. Chen et al., Sandwiched cathodes kinetically boosted by few-layered catalytic 1t-MoSe2 nanosheets for high-rate and long-cycling lithium-sulfur batteries. EcoMat 5, e12329 (2023).
[127] K.L. Bassett, Ö. Özgür Çapraz, B. Özdogru, A.A. Gewirth, N.R. Sottos, Cathode/electrolyte interface-dependent changes in stress and strain in lithium iron phosphate composite cathodes. J. Electrochem. Soc. 166, 2707 (2019).
[128] E. Peled, S. Menkin, Review—SEI: past, present and future. J. Electrochem. Soc. 164, A1703–A1719 (2017).
[129] Z. Shen, W. Zhang, S. Mao, S. Li, X. Wang et al., Tailored electrolytes enabling practical lithium–sulfur full batteries via interfacial protection. ACS Energy Lett. 6, 2673–2681 (2021).
[130] S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal–sulfur battery cathodes based on pan–sulfur composites. J. Am. Chem. Soc. 137, 12143–12152 (2015).
[131] G.-L. Xu, H. Sun, C. Luo, L. Estevez, M. Zhuang et al., Solid-state lithium/selenium–sulfur chemistry enabled via a robust solid-electrolyte interphase. Adv. Energy Mater. 9, 1802235 (2019).
[132] J. Xu, S. An, X. Song, Y. Cao, N. Wang et al., Towards high performance Li–S batteries via sulfonate-rich cof-modified separator. Adv. Mater. 33, e2105178 (2021).
[133] T. Lei, W. Chen, W. Lv, J. Huang, J. Zhu et al., Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2, 2091–2104 (2018).
[134] J.Y. Wei, X.Q. Zhang, L.P. Hou, P. Shi, B.Q. Li et al., Shielding polysulfide intermediates by an organosulfur-containing solid electrolyte interphase on the lithium anode in lithium-sulfur batteries. Adv. Mater. 32, e2003012 (2020).
[135] W. Wang, X. Yue, J. Meng, J. Wang, X. Wang et al., Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Mater. 18, 414–422 (2019).
[136] G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014).
[137] N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016).
[138] W. Liu, J. Jiang, K.R. Yang, Y. Mi, P. Kumaravadivel et al., Ultrathin dendrimer-graphene oxide composite film for stable cycling lithium-sulfur batteries. Proc. Natl. Acad. Sci. U.S.A. 114, 3578–3583 (2017).
[139] Z. Li, J. Zhang, X.W. Lou, Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew. Chem. Int. Ed. 54, 12886–12890 (2015).
[140] Z. Wei Seh, W. Li, J.J. Cha, G. Zheng, Y. Yang et al., Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat. Commun. 4, 1331 (2013).
[141] Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang et al., Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 15, 3780–3786 (2015).
[142] X. Fang, H. Peng, A revolution in electrodes: Recent progress in rechargeable lithium–sulfur batteries. Small 11, 1488–1511 (2015).
[143] Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang et al., Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nat. Commun. 5, 5017 (2014).
[144] Y. Yi, F. Hai, X. Tian, Z. Wu, S. Zheng et al., A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion. Chem. Eng. J. 466, 143303 (2023).
[145] H. Li, X. Wu, S. Jiang, Q. Zhang, Y. Cao et al., A high-loading and cycle-stable solid-phase conversion sulfur cathode using edible fungus slag-derived microporous carbon as sulfur host. Nano Res. 16, 8360–8367 (2022).
[146] X. Chen, H. Ji, Z. Rao, L. Yuan, Y. Shen et al., Insight into the fading mechanism of the solid-conversion sulfur cathodes and designing long cycle lithium–sulfur batteries. Adv. Energy Mater. 12, 2102774 (2022).
[147] X. Chen, L. Yuan, Z. Li, S. Chen, H. Ji et al., Realizing an applicable “solid → solid” cathode process via a transplantable solid electrolyte interface for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 11, 29830–29837 (2019).
[148] F. He, X. Wu, J. Qian, Y. Cao, H. Yang et al., Building a cycle-stable sulphur cathode by tailoring its redox reaction into a solid-phase conversion mechanism. J. Mater. Chem. A 6, 23396–23407 (2018).
[149] L. Huang, T. Guan, H. Su, Y. Zhong, F. Cao et al., Synergistic interfacial bonding in reduced graphene oxide fiber cathodes containing polypyrrole@sulfur nanospheres for flexible energy storage. Angew. Chem. Int. Ed. 61, e202212151 (2022).
[150] S. Jiang, X.L. Li, D. Fang, W.Y. Lieu, C. Chen et al., Metal–organic-framework-derived 3D hierarchical matrixes for high-performance flexible Li–S batteries. ACS Appl. Mater. Interfaces 15, 20064–20074 (2023).
[151] X. Hu, J. Jian, Z. Fang, L. Zhong, Z. Yuan et al., Hierarchical assemblies of conjugated ultrathin cof nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: fully-exposed porphyrin matters. Energy Storage Mater. 22, 40–47 (2019).
[152] Z. Liang, J. Shen, X. Xu, F. Li, J. Liu et al., Advances in the development of single-atom catalysts for high-energy-density lithium–sulfur batteries. Adv. Mater. 34, 2200102 (2022).
[153] K. Liu, X. Wang, S. Gu, H. Yuan, F. Jiang et al., N, S-coordinated co single atomic catalyst boosting adsorption and conversion of lithium polysulfides for lithium-sulfur batteries. Small 18, e2204707 (2022).
[154] H. Ye, J. Sun, S. Zhang, T. Zhang, Y. Zhao et al., Enhanced polysulfide conversion catalysis in lithium-sulfur batteries with surface cleaning electrolyte additives. Chem. Eng. J. 410, 128284 (2021).
[155] Y. Li, Y. Zeng, Y. Chen, D. Luan, S. Gao et al., Mesoporous N-rich carbon with single-ni atoms as a multifunctional sulfur host for Li–S batteries. Angew. Chem. Int. Ed. 61, e202212680 (2022).
[156] T. Li, D. Cai, S. Yang, Y. Dong, S. Yu et al., Desolvation synergy of multiple H/Li-bonds on an iron-dextran-based catalyst stimulates lithium–sulfur cascade catalysis. Adv. Mater. 34, 2207074 (2022).
[157] F. Pei, S. Dai, B. Guo, H. Xie, C. Zhao et al., Titanium–oxo cluster reinforced gel polymer electrolyte enabling lithium-sulfur batteries with high gravimetric energy densities. Energy Environ. Sci. 14, 975–985 (2021).
[158] D. Wang, D. Luo, Y. Zhang, Y. Zhao, G. Zhou et al., Deciphering interpenetrated interface of transition metal oxides/phosphates from atomic level for reliable li/s electrocatalytic behavior. Nano Energy 81, 105602 (2021).
[159] S. Yu, S. Yang, D. Cai, H. Nie, X. Zhou et al., Regulating f orbital of tb electronic reservoir to activate stepwise and dual-directional sulfur conversion reaction. InfoMat 5, e12381 (2022).
[160] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong et al., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Mater. 5, 139–164 (2016).
[161] J. Zheng, G. Ji, X. Fan, J. Chen, Q. Li et al., High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019).
[162] W.-J. Chen, C.-X. Zhao, B.-Q. Li, Q. Jin, X.-Q. Zhang et al., A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries. Energy Environ. Mater. 3, 160–165 (2020).
[163] Y. Liu, Y. Elias, J. Meng, D. Aurbach, R. Zou et al., Electrolyte solutions design for lithium-sulfur batteries. Joule 5, 2323–2364 (2021).
[164] Y. Jo, D. Jin, M. Lim, H. Lee, H. An et al., Structural and chemical evolutions of Li/electrolyte interfaces in Li-metal batteries: Tracing compositional changes of electrolytes under practical conditions. Adv. Sci. 220, 4812 (2022).
[165] Y. He, P. Zou, S.-M. Bak, C. Wang, R. Zhang et al., Dual passivation of cathode and anode through electrode–electrolyte interface engineering enables long-lifespan Li metal–span batteries. ACS Energy Lett. 7, 2866–2875 (2022).
[166] X. Kong, Y. Kong, Y. Zheng, L. He, D. Wang et al., Hydrofluoroether diluted dual-salts-based electrolytes for lithium-sulfur batteries with enhanced lithium anode protection. Small (2022).
[167] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-liquid-based polymer electrolytes for battery applications. Angew. Chem. Int. Ed. 55, 500–513 (2016).
[168] Z. Lin, X. Guo, H. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy 41, 646–653 (2017).
[169] H. Wu, Y. Cao, H. Su, C. Wang, Tough gel electrolyte using double polymer network design for the safe, stable cycling of lithium metal anode. Angew. Chem. Int. Ed. 57, 1361–1365 (2018).
[170] G. Chen, F. Zhang, Z. Zhou, J. Li, Y. Tang, A flexible dual-ion battery based on pvdf-hfp-modified gel polymer electrolyte with excellent cycling performance and superior rate capability. Adv. Energy Mater. 8, 1801219 (2018).
[171] M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016).
[172] T. Chen, W. Kong, Z. Zhang, L. Wang, Y. Hu et al., Ionic liquid-immobilized polymer gel electrolyte with self-healing capability, high ionic conductivity and heat resistance for dendrite-free lithium metal batteries. Nano Energy 54, 17–25 (2018).
[173] J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, A new high ionic conductive gel polymer electrolyte enables highly stable quasi-solid-state lithium sulfur battery. Energy Storage Mater. 22, 256–264 (2019).
[174] J. Cao, L. Wang, Y. Shang, M. Fang, L. Deng et al., Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries. Electrochim. Acta 111, 674–679 (2013).
[175] Y. Ren, A. Manthiram, A dual-phase electrolyte for high-energy lithium–sulfur batteries. Adv. Energy Mater. 12, 2202566 (2022).
[176] W. Guo, W. Zhang, Y. Si, D. Wang, Y. Fu et al., Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nat. Commun. 12, 3031 (2021).
[177] W. Wang, K. Xi, B. Li, H. Li, S. Liu et al., A sustainable multipurpose separator directed against the shuttle effect of polysulfides for high-performance lithium–sulfur batteries. Adv. Energy Mater. 12, 2200160 (2022).
[178] W. Zhang, D. Hong, Z. Su, S. Yi, L. Tian et al., Tailored ZnO-ZnS heterostructure enables a rational balancing of strong adsorption and high catalytic activity of polysulfides for Li–s batteries. Energy Storage Mater. 53, 404–414 (2022).
[179] G. Zeng, Y. Liu, D. Chen, C. Zhen, Y. Han et al., Natural lepidolite enables fast polysulfide redox for high-rate lithium sulfur batteries. Adv. Energy Mater. 11, 2102058 (2021).
[180] L. Fan, M. Li, X. Li, W. Xiao, Z. Chen et al., Interlayer material selection for lithium-sulfur batteries. Joule. 3, 361–386 (2019).
[181] Y.C. Jeong, J.H. Kim, S. Nam, C.R. Park, S.J. Yang, Rational design of nanostructured functional interlayer/separator for advanced Li–S batteries. Adv. Funct. Mater. 28, 1707411 (2018).
[182] Y. Pang, J.S. Wei, Y.G. Wang, Y.Y. Xia, Synergetic protective effect of the ultralight mwcnts/ncqds modified separator for highly stable lithium-sulfur batteries. Adv. Energy Mater. (2018).
[183] G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu et al., Catalytic oxidation of Li2S on the surface of metal sulfides for Li–S batteries. PNAS 114, 840–845 (2017).
[184] Y.C. Tsao, M. Lee, E.C. Miller, G.P. Gao, J. Park et al., Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule 3, 872–884 (2019).
[185] D. Tian, X.Q. Song, M.X. Wang, X. Wu, Y. Qiu et al., Mon supported on graphene as a bifunctional interlayer for advanced Li–S batteries. Adv. Energy Mater. (2019).
[186] D. Liu, C. Zhang, G. Zhou, W. Lv, G. Ling et al., Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 5, 1700270 (2018).
[187] D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng et al., Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries. Adv. Funct. Mater. (2021).
[188] X.H. Hu, L.F. Zhong, C.H. Shu, Z.S. Fang, M.J. Yang et al., Versatile, aqueous soluble C2N quantum dots with enriched active edges and oxygenated groups. J. Am. Chem. Soc. 142, 4621–4630 (2020).
[189] G.R. Li, F. Lu, X.Y. Dou, X. Wang, D. Luo et al., Polysulfide regulation by the zwitterionic barrier toward durable lithium-sulfur batteries. J. Am. Chem. Soc. 142, 3583–3592 (2020).
[190] J.-L. Yang, D.-Q. Cai, X.-G. Hao, L. Huang, Q. Lin et al., Rich heterointerfaces enabling rapid polysulfides conversion and regulated Li2S deposition for high-performance lithium–sulfur batteries. ACS Nano 15, 11491–11500 (2021).
[191] A. Hu, W. Chen, X. Du, Y. Hu, T. Lei et al., An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021).
[192] X. Li, M. Lv, Y. Tian, L. Gao, T. Liu et al., Negatively charged polymeric interphase for regulated uniform lithium-ion transport in stable lithium metal batteries. Nano Energy (2021).
[193] K. Zhao, Q. Jin, L. Li, X. Zhang, L. Wu, Shielding polysulfides enabled by a biomimetic artificial protective layer in lithium-sulfur batteries. J. Colloid Interface Sci. 625, 119–127 (2022).
[194] P.-Y. Chen, C. Yan, P. Chen, R. Zhang, Y.-X. Yao et al., Selective permeable lithium-ion channels on lithium metal for practical lithium–sulfur pouch cells. Angew. Chem. Int. Ed. 60, 18031–18036 (2021).
[195] Y.X. Ren, L. Zeng, H.R. Jiang, W.Q. Ruan, Q. Chen et al., Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium-sulfur batteries. Nat. Commun. 10, 3249 (2019).
[196] C. Yan, X.-Q. Zhang, J.-Q. Huang, Q. Liu, Q. Zhang, Lithium-anode protection in lithium–sulfur batteries. Trends Chem 1, 693–704 (2019).
[197] J.-Q. Huang, Q. Zhang, H.-J. Peng, X.-Y. Liu, W.-Z. Qian et al., Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014).
[198] X. Wang, X. Zhang, Y. Zhao, D. Luo, L. Shui et al., Accelerated multi-step sulfur redox reactions in lithium-sulfur batteries enabled by dual defects in metal-organic framework-based catalysts. Angew. Chem. Int. Ed. (2023).
[199] R. Meng, X. He, S.J.H. Ong, C. Cui, S. Song et al., A radical pathway and stabilized li anode enabled by halide quaternary ammonium electrolyte additives for lithium-sulfur batteries. Angew. Chem. Int. Ed. (2023).
[200] Z. Chi, J. Ding, C. Ding, B. Cui, W. Wang et al., A heterostructured gel polymer electrolyte modified by MoS2 for high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces (2023).
[201] Y. Li, T. Wang, J. Chen, X. Peng, M. Chen et al., An artificial interfacial layer with biomimetic ionic channels towards highly stable Li metal anodes. Sci. Bull. 68, 1379–1388 (2023).
[202] S. Fang, X. Zhu, X. Liu, J. Gu, W. Liu et al., Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 11, 1029 (2020).
[203] H. Zhong, M. Ghorbani-Asl, K.H. Ly, J. Zhang, J. Ge et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nat. Commun. 11, 1409 (2020).
[204] Q. He, B. Yu, Z. Li, Y. Zhao, Density functional theory for battery materials. Energy Environ. Mater. 2, 264–279 (2019).
[205] S. Feng, Z.-H. Fu, X. Chen, Q. Zhang, A review on theoretical models for lithium–sulfur battery cathodes. InfoMat 4, e12304 (2022).
[206] M. Li, H. Chen, C. Guo, S. Qian, H. Li et al., Interfacial engineering on cathode and anode with iminated polyaniline@RGO-CNTs for robust and high-rate full lithium–sulfur batteries. Adv. Energy Mater. (2023).
[207] T. Tao, Z. Zheng, Y. Gao, B. Yu, Y. Fan et al., Understanding the role of interfaces in solid-state lithium-sulfur batteries. Energy Mater. 2, 517 (2022).
[208] J. Sun, Z. Du, Y. Liu, W. Ai, K. Wang et al., State-of-the-art and future challenges in high energy lithium–selenium batteries. Adv. Mater. 33, 2003845 (2021).
[209] Q. Zou, Y. Sun, Z. Liang, W. Wang, Y.-C. Lu, Achieving efficient magnesium–sulfur battery chemistry via polysulfide mediation. Adv. Energy Mater. 11, 2101552 (2021).
[210] Q. Zou, Y.-C. Lu, Liquid electrolyte design for metal-sulfur batteries: mechanistic understanding and perspective. EcoMat 3, e12115 (2021).
[211] Q. Zou, Z. Liang, G.-Y. Du, C.-Y. Liu, E.Y. Li et al., Cation-directed selective polysulfide stabilization in alkali metal–sulfur batteries. J. Am. Chem. Soc. 140, 10740–10748 (2018).
[212] J. Sun, Y. Liu, L. Liu, J. Bi, S. Wang et al., Interface engineering toward expedited Li2S deposition in lithium–sulfur batteries: a critical review. Adv. Mater. (2023).