[1] XIAO T, HUANG J S, WANG D W, et al. Au and Au-Based nanomaterials: synthesis and recent progress in electrochemical sensor applications[J]. Talanta, 206, 120210(2020).
[2] XU J W, YAO K, XU Z K. Nanomaterials with a photothermal effect for antibacterial activities: an overview[J]. Nanoscale, 11, 8680-8691(2019).
[3] FLEISCHMANN M, HENDRA P J, MCQUILLAN A J, et al. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 26, 163-166(1974).
[4] KUMAR A, FURTADO V L, GONÇALVES J M, et al. Amperometric microsensor based on nanoporous gold for ascorbic acid detection in highly acidic biological extracts[J]. Analytica Chimica Acta, 1095, 61-70(2020).
[5] BEG S, RAHMAN M, JAIN A, et al. Nanoporous metal organic frameworks as hybrid polymer–metal composites for drug delivery and biomedical applications[J]. Drug Discovery Today, 22, 625-637(2017).
[6] SHABAN M, RABIA M, FATHALLAH W, et al. Preparation and characterization of polyaniline and Ag/polyaniline composite nanoporous particles and their antimicrobial activities[J]. Journal of Polymers and the Environment, 26, 434-442(2018).
[7] JAIN P, ANILA K A, VINOD C P. Au based Ni and Co bimetallic core shell nanocatalysts for room temperature selective decomposition of hydrous hydrazine to hydrogen[J]. ChemistrySelect, 4, 2734-2740(2019).
[8] LIU X, DU J, SHAO Y, et al. One-pot preparation of nanoporous Ag-Cu@Ag core-shell alloy with enhanced oxidative stability and robust antibacterial activity[J]. Scientific Reports, 7, 10249(2017).
[9] TANTAWY H R, NADA A A, BARAKA A, et al. Novel synthesis of bimetallic Ag-Cu nanocatalysts for rapid oxidative and reductive degradation of anionic and cationic dyes[J]. Applied Surface Science Advances, 3, 100056(2021).
[10] XING Y L, WANG S B, FANG B Z, et al. Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries[J]. Microporous and Mesoporous Materials, 261, 237-243(2018).
[11] JUAREZ T, BIENER J, WEISSMÜLLER J, et al. Nanoporous metals with structural hierarchy: A review[J]. Advanced Engineering Materials, 19, 1700389(2017).
[12] DI X, PAN Y, DAI W J, et al. In-situ electrochemical oxidation of amorphous nanoporous NiZrO for enhanced non-enzymatic glucose sensing[J]. Materials Letters, 271, 127694(2020).
[13] PARK H, REDDY D A, KIM Y, et al. Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation[J]. Applied Surface Science, 401, 314-322(2017).
[14] KASHYAP R, CHAKRABORTY S, ZENG S W, et al. Enhanced biosensing activity of bimetallic surface plasmon resonance sensor[J]. Photonics, 6, 108(2019).
[15] STEPHANIE R, KIM M W, KIM S H, et al. Recent advances of bimetallic nanomaterials and its nanocomposites for biosensing applications[J]. TrAC Trends in Analytical Chemistry, 135, 116159(2021).
[16] NGAMAROONCHOTE A, SANGUANSAP Y, WUTIKHUN T, et al. Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide[J]. Microchimica Acta, 187, 559(2020).
[17] CHEN K, ZHANG X Y, MACFARLANE D R. Ultrasensitive surface-enhanced Raman scattering detection of urea by highly ordered Au/Cu hybrid nanostructure arrays[J]. Chemical Communications, 53, 7949-7952(2017).
[18] SAJITHA M, ABRAHAM B, NELLIYIL R B, et al. Chemically etched nanoporous copper and galvanically displaced silver nanoflowers for SERS Sensing[J]. ACS Applied Nano Materials, 4, 10038-10046(2021).
[19] LEE Y S, SUN Y H, CHENG I C. Self-organizing Ag-decorated nanoporous Cu by dealloying process[J]. Scripta Materialia, 208, 114337(2022).
[20] HE L Y, LV L X, PILLAI S C, et al. Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system[J]. Science of the Total Environment, 783, 146974(2021).
[21] ESPARZA R, SANTOVEÑA A, Ruíz-BALTAZAR A, et al. Study of PtPd bimetallic nanoparticles for fuel cell applications[J]. Materials Research, 20, 1193-1200(2017).
[22] LEE S, PARK J H, LEE K T, et al. Anodic properties of Ni-Fe bimetallic nanofiber for solid oxide fuel cell using LaGaO3 electrolyte[J]. Journal of Alloys and Compounds, 875, 159911(2021).
[23] SZUMEŁDA T, DRELINKIEWICZ A, KOSYDAR R, et al. Synthesis of carbon-supported bimetallic palladium–iridium catalysts by microemulsion: characterization and electrocatalytic properties[J]. Journal of Materials Science, 56, 392-414(2021).
[26] CHEN L Y, YU J S, FUJITA T, et al. Nanoporous copper with tunable nanoporosity for SERS applications[J]. Advanced Functional Materials, 19, 1221-1226(2009).
[27] CHEN L Y, FUJITA T, DING Y, et al. A three‐dimensional gold‐decorated nanoporous copper core–shell composite for electrocatalysis and nonenzymatic biosensing[J]. Advanced Functional Materials, 20, 2279-2285(2010).
[28] GUO X Y, CHEN F, WANG F, et al. Recyclable Raman chip for detection of trace Mercury ions[J]. Chemical Engineering Journal, 390, 124528(2020).
[29] CHEN L Y, ZHANG L, FUJITA T, et al. Surface-Enhanced Raman scattering of Silver@Nanoporous copper core−shell composites synthesized by an in situ sacrificial template approach[J]. The Journal of Physical Chemistry C, 113, 14195-14199(2009).
[30] NIU W H, SHI J J, JU L C, et al. Understanding synergism of cobalt metal and copper oxide toward highly efficient electrocatalytic oxygen evolution[J]. ACS Catalysis, 8, 12030-12040(2018).