• Journal of Atmospheric and Environmental Optics
  • Vol. 15, Issue 6, 413 (2020)
Shipeng KANG1、2、3、*, Tongzhu YU1、3, Huaqiao GUI1、2、3, Yongxing YUAN1、2、3, Huanqin WANG2、4, and Jianguo LIU1、2、3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1673-6141.2020.06.002 Cite this Article
    KANG Shipeng, YU Tongzhu, GUI Huaqiao, YUAN Yongxing, WANG Huanqin, LIU Jianguo. Research Progress of On-Line Monitoring Technology for Ultrafine Particulate Matter Emitted by Motor Vehicles[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 413 Copy Citation Text show less
    References

    [1] Chen Z H, Wu Y F, Wang P L, et al. Autophagy is essential for ultrafine particle-induced inflammation and mucus hyperproduction in airway epithelium[J]. Autophagy, 2016, 12(2): 297-311.

    [2] Fan J W, Rosenfeld D, Zhang Y W, et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles[J]. Science, 2018, 359(6374): 411-418.

    [3] Wu Z J, Hu M, Liu S, et al. New particle formation in Beijing, China: Statistical analysis of a1-year data set[J]. Journal of Geophysical Research Atmospheres, 2007, 112(D9): D09209.

    [4] GB17691-2018. Stage 6 Limits and measurement methods for emissions from heavy-duty diesel vehicles[S]. Beijing: China Standard Press, 2018 (in Chinese).

    [5] GB18352.6-2016. Stage 6 Limits and measurement methods for emissions from light-duty vehicles[S]. Beijing: China Standard Press, 2016 (in Chinese).

    [6] Fierz M, Burtscher H, Steigmeier P, et al. Field measurement of particle size and number concentration with the diffusion size classifier (Disc)[C]// SAE 2008 World Congress, 2008.

    [7] Fierz M, Weimer S, Burtscher H. Design and performance of an optimized electrical diffusion battery[J]. Journal of Aerosol Science, 2009, 40(2): 152-163.

    [8] Fierz M, Houle C, Steigmeier P, et al. Design, calibration, and field performance of a miniature diffusion size classifier[J]. Aerosol Science & Technology, 2011, 45(1): 1-10.

    [9] Rostedt A, Marjamki M, Yli-Ojanper J, et al. Non-collecting electrical sensor for particle concentration measurement[J]. Aerosol & Air Quality Research, 2009, 9(4): 470-477.

    [10] Rostedt A, Arffman A, Janka K, et al. Characterization and response model of the PPS-M aerosol sensor[J]. Aerosol Science & Technology, 2014, 48(10): 1022-1130.

    [11] Keskinen J, Marjamki M, Virtanen A, et al. Electrical calibration method for cascade impactors[J]. Journal of Aerosol Science, 1999, 30(1): 111-116.

    [12] Jrvinen A, Aitomaa M, Rostedt A, et al. Calibration of the new electrical low pressure impactor (ELPI+)[J]. Journal of Aerosol Science, 2014, 69: 150-159.

    [13] Wang X L, Grose M A, Caldow R, et al. Improvement of engine exhaust particle sizer (EEPS) size distribution measurement-II. engine exhaust particles[J]. Journal of Aerosol Science, 2016, 92: 83-94.

    [14] Han H S, Chen D R, Pui D Y H, et al. A nanometer aerosol size analyzer (nASA) for rapid measurement of high-concentration size distributions[J]. Journal of Nanoparticle Research, 2000, 2(1): 43-52.

    [15] Lanki T, Taimisto P, Tikkanen J, et al. An electrical sensor for long-term monitoring of ultrafine particles in workplaces[J]. Journal of Physics, 2011, 304(1): 012013.

    [16] Yang Yixin. Electronic Design and Experimental Study of Diffusion Charge Based Motor Vehicle Emission Particles Number Concentration Measurement System[D]. Hefei: Dissertation for Doctor’s Degree of University of Science and Technology of China, 2019 (in Chinese).

    [17] Kulmala M, Riipnen I, Sipil M, et al. Toward direct measurement of atmospheric nucleation[J]. Science, 2007, 318(5847): 89-93.

    [18] Johnson T, Caldow R, Pcher A, et al. A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements[C]// SAE World Congress, 2004.

    [19] Keskinen J, Pietarinen K, Lehtimki M. Electrical low pressure impactor[J]. Journal of Aerosol Science, 1992, 23(4): 353-360.

    [20] Reavell K, Hands T, Collings N. A fast response particulate spectrometer for combustion aerosols[J]. SAE Transactions, 2002, 111: 1338-1344.

    [21] Liu B Y H, Whitby K T, Yu H H S. Diffusion charging of aerosol particles at low pressures[J]. Journal of Applied Physics, 1967, 38(4): 1592-1597.

    [22] Stavros A, Matti M M, Leonidas N, et al. Measuring number, mass, and size of exhaust particles with diffusion chargers: The dual pegasor particle sensor[J]. Journal of Aerosol Science, 2016, 92: 1-15.

    [23] Leonidas N, Zissis S, Panayotis P, et al. Statistical analysis of diesel fuel effect on particle number and mass emissions[J]. Environmental Science & Technology, 2000, 34(24): 5106-5114.

    [24] Leonidas N, Stavros A, Zissis S, et al. Application of the Pegasor particle sensor for the measurement of mass and particle number emissions[J]. SAE International Journal of Fuels and Lubricants, 2013, 6(2): 521-531.

    [25] Kwon J W, Kim M S, Chung M C, et al. Comparison of nano-particle emission characteristics in CI engine with various biodiesel blending rates by using PPS System[J]. Journal of ILASS-Korea, 2012, 17(2): 134-139.

    [26] Stavros A, Matti M M, Leonidas N, et al. Application of the dual Pegasor particle sensor to real-time measurement of motor vehicle exhaust PM[J]. Journal of Aerosol Science, 2017, 103: 93-104.

    [27] Zhang Q, Wu L, Yang Z, et al. Characteristics of gaseous and particulate pollutants exhaust from logistics transportation vehicle on real-world conditions[J]. Transportation Research Part D, 2016, 43: 40-48.

    [28] Shao S S, Cheng J N, Zhang B, et al. Effects of a DOC+DPF system on emission characteristics of China Π engineering vehicle diesel engine and influence factors of trapping efficiency of PM for DOC+DPF system[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(5): 527-541.

    [29] Yu Q S, Tan J W, Ge Y S, et al. Application of diesel particulate filter on in-use on-road vehicles[C]// th International Conference on Applied Energy (ICAE2016), 2016.

    [30] Xiang L, Zhang Z. Experimental investigation of particulate matter emissions from a single cylinder diesel engine fuelled with waste cooking oil biodiesel[C]// Proceedings of the Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017), 2017.

    [31] Yang Y X, Yu T Z, Zhang J S. On the performance of an aerosol electrometer with enhanced detection limit[J]. Sensors (Basel, Switzerland), 2018, 18(11): 3889.

    [32] Yu T Z, Yang Y X, Liu J G. Design and evaluation of a unipolar aerosol particle charger with built-in electrostatic precipitator[J]. Instrumentation Science & Technology, 2018, 46(3): 326-347.

    [33] Yang Y X, Yu T Z, Zhang J S. Design and evaluation of an aerosol electrometer with low noise and a wide dynamic range[J]. Sensors, 2018, 18(5): 1614.

    [34] Wang Wenyu. Research on Key Technologies of On-line Measurement of Ultrafine Particle Number Concentration of Motor Vehicle Emission Based on Condensation Particle Counting[D]. Hefei: Dissertation for Doctor’s Degree of University of Science and Technology of China, 2020 (in Chinese).

    [35] Espy J P. The Philosophy of Storms[M]. California: BiblioBazaar, 2010.

    [36] Aitken, John. On improvements in the apparatus for counting the dust particles in the atmosphere[J]. Proceedings of the Royal Society of Edinburgh, 1890, 16: 135-172.

    [37] Agarwal, J K, Sem G J. Continuous flow, single-particle-counting condensation nucleus counter[J]. Journal of Aerosol Science, 1980, 11(4): 343-357.

    [38] Wilson J C, Loewenstein M, Fahey D W, et al. Observations of condensation nuclei in the Airborne Antarctic Ozone Experiment: Implications for new particle formation and polar stratospheric cloud formation[J]. Journal of Geophysical Research:Atmospheres, 1989, 94(14): 16437-16448.

    [39] Riipinen I, Sipil M, Petj T, et al. Detecting neutral particles below 3 nm: Calibration of UF-02 proto CPC and first results from Hyytil[C]// Proceedings of BACCI, NECC and FCoE activities 2005, 2005.

    [40] Plauskaite K, Mordas G, Andriejauskien J, et al. New condensation particle counter UF02[J]. Lithuanian Journal of Physics & Technical Sciences 2006, 46(4): 489-496.

    [41] Giorgio M, Barouch G, Panagiota D. Future European emission standards for vehicles: the importance of the UN-ECE particle measurement programme[J]. Biomarkers 2011, 14(1): 29-33.

    [42] Kim J, Choi K, Myung C L, et al. Comparative investigation of regulated emissions and nano-particle characteristics of light duty vehicles using various fuels for the FTP-75 and the NEDC mode[J]. Fuel, 2013, 106: 335-343.

    [43] Fan Youyou, Jiang Jingkun, Zhang Qiang, et al. Number concentration and size distribution of particles emitted by light-duty gasoline vehicles[J]. Environmental Science, 2016, 37(10): 3743-3749 (in Chinese).

    [44] Moisio M. Real Time Size Distribution Measurement of Combustion Aerosols[D]. Tampere: Doctoral Dissertation of Tampere University of Technology, 1999.

    [45] Knutson E O, Whitby K T. Aerosol classification by electric mobility: Apparatus, theory, and applications[J]. Journal of Aerosol Science, 1975, 6(6): 443-451.

    [46] Khalek I A. Characterization of particle size distribution of a heavy-duty diesel engine during FTP transient cycle using ELPI[R]. SAE Technical Paper, 2000.

    [47] Fan Youyou, Jiang Jingkun, Wu Ye, et al. Characteristics of particles emitted by a gasoline direct injection vehicle under different dilution conditions and measurement systems[J]. Proceedings of The Chinese Society for Electrical Engineering, 2016, 36(16): 4452-4458 (in Chinese).

    [48] Huang Wenwei, Study on Hazard Waste Emissions Features of Diesel Commercial Vehicles in Hot and Humid Area[D]. Beijing: Doctoral Dissertation of Beijing Jiaotong University, 2019 (in Chinese).

    [49] Zhou Xiaobo, Hu Qinghua, Yan Feng, et al. Experimental study on particle distribution of exhaust emission of heavy-duty diesel engine[J]. Transactions of the Chinese Society of Agriculture Engineering, 2018, 34(13): 62-69 (in Chinese).

    [50] Zhuang Zhuyue, Zhao Yanyu, Fang Junhua, et al. Effects of injection strategy and operation parameters on particle emission of gasoline direct injection engine[J]. Journal of Shanghai Jiaotong University, 2017, 51(7): 796-804 (in Chinese).

    [51] Liu Shuangxi, Qin Kongjian, Ruan Xu, et al. An experimental study with ELPI on distribution of diesel engine exhaust particles[C]// Proceedings of the 13th annual meeting of fuel and lubricants branch of China Society of Automotive Engineering, 2008 (in Chinese).

    [52] Ovaska T, Niemi S, Sirvi K, et al. Exhaust particle size distributions of a non-road diesel engine in an endurance test[J]. Applied Thermal Engineering, 2019, 150: 1168-1176.

    [53] Ovaska T, Niemi S, Sirvi K, et al. Effect of Alternative Liquid Fuels on the Exhaust Particle Size Distributions of a Medium-Speed Diesel Engine[J]. Energies, 2019, 12(11): 2050.

    [54] Kim W G, Kim C K, Lee J T, et al. Fine particle emission characteristics of a light-duty diesel vehicle according to vehicle acceleration and road grade[J]. Transportation Research Part D: Transport and Environment, 2017, 53: 428-439.

    [55] Distaso E, Amirante R, Tamburrano P, et al. Steady-state characterization of particle number emissions from a heavy-duty Euro VI engine fueled with compressed natural gas[J]. Energy Procedia, 2018, 148: 671-678.

    [56] Leach F C P, Stone R, Richardson D, et al. The effect of fuel composition on particulate emissions from a highly boosted GDI engine-an evaluation of three particulate indices[J]. Fuel, 2019, 252: 598-611.

    KANG Shipeng, YU Tongzhu, GUI Huaqiao, YUAN Yongxing, WANG Huanqin, LIU Jianguo. Research Progress of On-Line Monitoring Technology for Ultrafine Particulate Matter Emitted by Motor Vehicles[J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 413
    Download Citation