[1] Li Xinyue, Yang Long, Sun Chungui, . High-pressure turbine blade defect detection technology based on micro-focus industrial CT[J]. Foundry, 72, 904-908(2023).
[2] Yang Guang, Gao Jiabao, Han Rui. Research on the technology of removing artifacts in industrial CT based on deep learning modeling[J]. Nondestructive Testing Technology, 47, 18-22(2023).
[3] Yang Qingguo, Tan Bozhong. Development and application of high-performance cone-beam industrial X-ray CT system[J]. Optical and Precision Engineering, 31, 804-812(2023).
[4] Qi Zicheng, Ni Peijun, Jiang Wei, . CT method for accurately sizing flaws in metallic material[J]. High Power Laser and Particle Beams, 30, 025102(2018).
[5] Tang Jie, Zhang Li, Gao Wenhuan. Review of cone-beam CT systems based on flat panel detector[J]. Chinese Journal of Stereology and Image Analysis, 9, 65-70(2004).
[6] Huang Kuidong, Zhang Hua, Shi Yikai, et al. Scatter correction method for cone-beam CT based on interlacing-slit scan[J]. Chinese Physics B, 23, 098106(2014).
[7] Halmshaw R. Industrial radiology: they practice[M]. Ddrecht: Springer, 1995.
[8] Li Shuanglei, Zhang Li, Chen Zhiqiang, . X-ray scatter correction algorithm for 450keV cone-beam CT system[J]. Nuclear Electronics & Detection Technology, 26, 908-911(2006).
[9] Cai Weixing, Ning Ruola, Conover D. Scatter crection using beam stop array algithm f conebeam CT breast imaging[C]Proceedings of SPIE 6142, Medical Imaging 2006: Physics of Medical Imaging. 2006: 11571165.
[10] Liu Wenlei, Rong Junyan, Gao Peng, et al. Algithm f Xray beam hardening scatter crection in lowdose conebeam CT: phantom studies[C]Proceedings of SPIE 9783, Medical Imaging 2016: Physics of Medical Imaging. 2016: 785792.
[11] Shao Yiwen, Lu Wenting, Zhou Linghong. Review of the methods for X-ray scatter correction in cone-beam CT system[J]. Chinese Journal of Medical Physics, 25, 634-637(2008).
[12] Sisniega A, Zbijewski W, Xu J, et al. High-fidelity artifact correction for cone-beam CT imaging of the brain[J]. Physics in Medicine & Biology, 60, 1415-1439(2015).
[13] Iskender B, Bresler Y. Scatter correction in X-ray CT by physics-inspired deep learning[J]. IEEE Transactions on Computational Imaging, 8, 1074-1088(2022).
[14] Lalonde A, Winey B, Verburg J, et al. Evaluation of CBCT scatter correction using deep convolutional neural networks for head and neck adaptive proton therapy[J]. Physics in Medicine & Biology, 65, 245022(2020).
[15] Naimuddin S, Hasegawa B, Mistretta C A. Scatter-glare correction using a convolution algorithm with variable weighting[J]. Medical Physics, 14, 330-334(1987).
[16] Ning Ruola, Tang Xiangyang, Conover D. X-ray scatter correction algorithm for cone-beam CT imaging[J]. Medical Physics, 31, 1195-1202(2004).
[17] Zou Wei, Zhu Guoping, Ling Yunlong, . A simulation study of two-dimensional anti-scatter grid in container CT inspection systems[J]. High Power Laser and Particle Beams, 35, 086001(2023).
[18] Yang Fuqiang. High quality imaging research on turbine blades f knowledgebased cone beam CT[D]. Xi’an: Nthwestern Polytechnical University, 2018
[19] Kaufmann M, Pfaffelhuber C, Vater I, et al. Quantitative assessment of a beam hole scatter correction in industrial computed tomography[J]. tm - Technisches Messen, 89, 625-633(2022).
[20] Zhu Yubin, Dai Yonghang, Han Kaining, et al. An efficient bicubic interpolation implementation for real-time image processing using hybrid computing[J]. Journal of Real-Time Image Processing, 19, 1211-1223(2022).
[21] Qin Yanping, Zhang Jun, Duo H Q, . Fusion method of wavelet transform and bicubic interpolation for wood knot image enhancement[J]. Journal of Northwest Forestry University, 36, 183-189(2021).
[22] Tang Tianxu, Duan Xiaojiao, Zhou Zhizheng, . Scatter correction based on beam stop array for cone-beam micro-computed tomography[J]. Acta Optica Sinica, 39, 0834001(2019).
[23] Hu Dongcai, Chen Hao, Zhang Dinghua. Scatter correction method for flat-panel detector-based cone beam CT[J]. CT Theory and Applications, 18, 16-22(2009).