[5] HU L, ZHENG C, ZHANG M , et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy[J]. Photoacoustics, 2020, 21: 100230.
[13] ZENG J, LIN Z, QI C , et al. An improved object detection method based on deep convolution neural network for smoke detection[C]//International Conference on Machine Learning and Cybernetics (ICMLC), 2018: 184-189.
[14] Bolya D, Zhou C, Xiao F, et al. Yolact: Real-time instance segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 9157-9166.
[15] XIE S, Girshick R, Dollár P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778.
[19] Chollet F. Xception: Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[20] Roy A G, Navab N, Wachinger C. Concurrent spatial and channel 'squeeze & excitation' in fully convolutional networks[C]//Medical Image Computing and Computer Assisted Intervention-MICCAI, 2018: 421-429.
[21] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[22] WANG J, Tchapmi L P, Ravikumar A P, et al. Machine vision for natural gas methane emissions detection using an infrared camera[J]. Applied Energy, 2020, 257: 113998.
[23] LIU H, Soto R A R, Xiao F, et al. YOLACT edge: Real-time instance segmentation on the edge[C]//IEEE International Conference on Robotics and Automation (ICRA), 2021: 9579-9585.
[24] HE K, Gkioxari G, Dollár P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.