• Optics and Precision Engineering
  • Vol. 31, Issue 16, 2406 (2023)
Baoping LI, Hengyi QI*, Manli WANG, and Po WEI
Author Affiliations
  • College of Physics and Electronic Information, Henan Polytechnic University, Jiaozuo454000, China
  • show less
    DOI: 10.37188/OPE.20233116.2406 Cite this Article
    Baoping LI, Hengyi QI, Manli WANG, Po WEI. Equipment fault dataset amplification method combine 3D model with improved CycleGAN[J]. Optics and Precision Engineering, 2023, 31(16): 2406 Copy Citation Text show less
    References

    [1] H SHIN et al. Enhancement of multi-class structural defect recognition using generative adversarial network. Sustainability, 13, 12682(2021).

    [2] C SHORTEN, T M KHOSHGOFTAAR. A survey on image data augmentation for deep learning. Journal of Big Data, 6, 1-48(2019).

    [3] L CHEN, H J WANG, X H MENG. Remote sensing image dataset expansion based on generative adversarial networks with modified shuffle attention. Sensors, 21, 4867(2021).

    [4] H G ZHANG, X G HU, D Z MA et al. Insufficient data generative model for pipeline network leak detection using generative adversarial networks. IEEE Transactions on Cybernetics, 52, 7107-7120(2022).

    [5] V SANDFORT, K YAN, P J PICKHARDT et al. Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks. Scientific Reports, 9, 16884(2019).

    [6] W C SU, H YE, S Y CHEN et al. DrawingInStyles: portrait image generation and editing with spatially conditioned StyleGAN. IEEE Transactions on Visualization and Computer Graphics(2022).

    [7] I GOODFELLOW, J POUGET-ABADIE, M MIRZA et al. Generative adversarial networks. Communications of the ACM, 63, 139-144(2020).

    [8] A RADFORD, L METZ, S CHINTALA. Unsupervised representation learning with deep convolutional generative adversarial networks(2016).

    [9] M ARJOVSKY, S CHINTALA, L BOTTOU. Wasserstein generative adversarial networks, 214-223(2017).

    [10] I GULRAJANI, F AHMED, M ARJOVSKY et al. Improved training of wasserstein GANs, 5769-5779(9).

    [11] J Y ZHU, T PARK, P ISOLA et al. Unpaired image-to-image translation using cycle-consistent adversarial networks, 2242-2251(22).

    [12] 12王昊天, 刘庆省, 陈亮, 等. 改进的CycleGAN网络用于水下显微图像颜色校正[J]. 光学 精密工程, 2022, 30(12)1499-1508. doi: 10.37188/OPE.20223012.1499WANGH T, LIUQ S, CHENL, et al. Improved CycleGAN network for underwater microscopic image color correction[J]. Opt. Precision Eng., 2022, 30(12)1499-1508(in Chinese). doi: 10.37188/OPE.20223012.1499

    [13] A N HU, Z XIE, Y Y XU et al. Unsupervised haze removal for high-resolution optical remote-sensing images based on improved generative adversarial networks. Remote Sensing, 12, 4162(2020).

    [14] X T WANG, K YU, S X WU et al. ESRGAN Enhanced Super-Resolution Generative Adversarial Networks. Lecture Notes in Computer Science, 63-79(2019).

    [15] 15郝帅, 吴瑛琦, 马旭, 等. 基于CycleGAN-SIFT的可见光和红外图像匹配[J]. 光学 精密工程, 2022, 30(5)602-614. doi: 10.37188/OPE.20223005.0592HAOS, WUY Q, MAX, et al. Visible and infrared image matching based on CycleGAN-SIFT[J]. Opt. Precision Eng., 2022, 30(5)602-614(in Chinese). doi: 10.37188/OPE.20223005.0592

    [16] 16凡志邈, 夏伟杰, 刘雪. 基于修正CycleGAN的声呐图像库构建方法研究[J]. 声学技术, 2021, 40(6)890-894. doi: 10.3969/j.issn.1000-3630.2021.6.sxjs202106023FANZ M, XIAW J, LIUX. Modified CycleGAN based sonar image library construction[J]. Technical Acoustics, 2021, 40(6)890-894(in Chinese). doi: 10.3969/j.issn.1000-3630.2021.6.sxjs202106023

    [17] 17杨植凯, 卜乐平, 王腾, 等. 基于循环一致性对抗网络的室内火焰图像场景迁移[J]. 光学 精密工程, 2020, 28(3)745-758. doi: 10.3788/ope.20202803.0745YANGZ K, BUL P, WANGT, et al. Scenemigration of indoor flame image based on Cycle-Consistent adversarial networks[J]. Opt. Precision Eng., 2020, 28(3)745-758(in Chinese). doi: 10.3788/ope.20202803.0745

    [18] 18崔克彬, 潘锋. 用于绝缘子故障检测的CycleGAN小样本库扩增方法研究[J]. 计算机工程与科学, 2022, 44(3)509-515. doi: 10.3969/j.issn.1007-130X.2022.03.017CUIK B, PANF. A CycleGAN small sample library amplification method for faulty insulator detection[J]. Computer Engineering and Science, 2022, 44(3)509-515(in Chinese). doi: 10.3969/j.issn.1007-130X.2022.03.017

    [19] 19杜振龙, 沈海洋, 宋国美, 等. 基于改进CycleGAN的图像风格迁移[J]. 光学 精密工程, 2019, 27(8)1836-1844. doi: 10.3788/ope.20192708.1836DUZ L, SHENH Y, SONGG M, et al. Image style transfer based on improved CycleGAN[J]. Opt. Precision Eng., 2019, 27(8)1836-1844(in Chinese). doi: 10.3788/ope.20192708.1836

    [20] H DOU, C CHEN, X HU et al. Asymmetric CycleGAN for image-to-image translations with uneven complexities. Neurocomputing, 415, 114-122(2020).

    [21] S PARIS, S W HASINOFF, J KAUTZ. Local Laplacian filters. ACM Transactions on Graphics, 30, 1-12(2011).

    [22] O RONNEBERGER, P FISCHER, T BROX. U-Net Convolutional Networks for Biomedical Image Segmentation. Lecture Notes in Computer Science, 234-241(2015).

    [23] K M HE, X Y ZHANG, S Q REN et al. Deep residual learning for image recognition, 770-778(27).

    [24] P ISOLA, J Y ZHU, T H ZHOU et al. Image-to-image translation with conditional adversarial networks, 5967-5976(21).

    [25] Y BENNY, T GALANTI, S BENAIM et al. Evaluation metrics for conditional image generation. International Journal of Computer Vision, 129, 1-20(2021).

    [26] M J CHEN, A C BOVIK. Fast structural similarity index algorithm. Journal of Real-Time Image Processing, 6, 281-287(2011).

    [27] Q HUYNH-THU, M GHANBARI. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44, 800-801(2008).

    Baoping LI, Hengyi QI, Manli WANG, Po WEI. Equipment fault dataset amplification method combine 3D model with improved CycleGAN[J]. Optics and Precision Engineering, 2023, 31(16): 2406
    Download Citation