• Progress in Geography
  • Vol. 39, Issue 7, 1126 (2020)
He SUN1、2、* and Fengge SU1、2、3
Author Affiliations
  • 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing 100101, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • 3CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
  • show less
    DOI: 10.18306/dlkxjz.2020.07.006 Cite this Article
    He SUN, Fengge SU. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. Progress in Geography, 2020, 39(7): 1126 Copy Citation Text show less
    References

    [1] Duan A M, Wu G X. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia[J]. Climate Dynamics, 24, 793-807(2005).

    [2] Immerzeel W W, van Beek L P, Bierkens M F. Climate change will affect the Asian water towers[J]. Science, 328, 1382-1385(2010).

    [3] Yao T D, Thompson L, Yang W et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2, 663-667(2012).

    [7] Yang W, Guo X F, Yao T D et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysical Research, 116(2011). https://www.ncbi.nlm.nih.gov/pubmed/24383048

    [8] Chen X N, Long D, Liang S L et al. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data[J]. Remote Sensing of Environment, 215, 284-299(2018).

    [9] Li C H, Su F G, Yang D Q et al. Spatiotemporal variation of snow cover over the Tibetan Plateau based on MODIS snow product, 2001-2014[J]. International Journal of Climatology, 38, 708-728(2018).

    [10] Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research, 115(2010).

    [11] Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 118, 5216-5230(2013).

    [12] Zhang L L, Su F G, Yang D Q et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 118, 8500-8518(2013).

    [16] Liu J T, Xu Z X, Bai J R et al. Assessment and correction of the PERSIANN-CDR product in the Yarlung Zangbo River Basin, China[J]. Remote Sensing, 10, 2031(2018). http://www.mdpi.com/2072-4292/10/12/2031

    [17] Tong K, Su F G, Yang D Q et al. Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals[J]. International Journal of Climatology, 34, 265-285(2014).

    [18] Qi W, Liu J G, Chen D L. Evaluations and improvements of GLDAS2.0 and GLDAS2.1 forcing data's applicability for basin scale hydrological simulations in the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 123, 13128-13148(2018).

    [19] Maussion F, Scherer D, Mölg T et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis[J]. Journal of Climate, 27, 1910-1927(2014).

    [20] Curio J, Maussion F, Scherer D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau[J]. Earth System Dynamics, 6, 109-124(2015).

    [21] Yatagai A, Kamiguchi K, Arakawa O et al. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of the American Meteorological Society, 93, 1401-1415(2012).

    [22] Ashouri H, Hsu K, Sorooshian S et al. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies[J]. Bulletin of the American Meteorological Society, 96, 69-83(2015).

    [23] Huffman G J, Bolvin D T, Braithwaite D et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG)[report]. Algorithm theoretical basis document, Version 4.5. Greenbelt, USA: NASA(2015).

    [24] Rodell M, Houser P R, Jambor U et al. The global land data assimilation system[J]. Bulletin of the American Meteorological Society, 85, 381-394(2004).

    [25] Caraway N M, McCreight J L, Rajagopalan B. Multisite stochastic weather generation using cluster analysis and k-nearest neighbor time series resampling[J]. Journal of Hydrology, 508, 197-213(2014).

    [26] Nasseri M, Tavakol-Davani H, Zahraie B. Performance assessment of different data mining methods in statistical downscaling of daily precipitation[J]. Journal of Hydrology, 492, 1-14(2013).

    [27] Ver Hoef J M, Temesgen H. A comparison of the spatial linear model to Nearest Neighbor (k-NN) methods for forestry applications[J]. PLoS One, 8, e59129(2013). https://www.ncbi.nlm.nih.gov/pubmed/23527110

    [28] Vicente-Serrano S M, Beguería S, López-Moreno J I et al. A complete daily precipitation database for northeast Spain: Reconstruction, quality control, and homogeneity[J]. International Journal of Climatology, 30, 1146-1163(2009).

    [29] Liang X, Lettenmaie D P, Wood E F et al. A simple hydrologically based model of land-surface water and energy fluxes[J]. Journal of Geophysical Research: Atmospheres, 99, 14415-14428(1994).

    [30] Liang X, Lettenmaie D P, Wood E F. One-dimensional statistical dynamic representation of subgrid spatial variability of precipitation in the two-layer variable infiltration capacity model[J]. Journal of Geophysical Research: Atmospheres, 101, 21403-21422(1996).

    [31] Cherkauer K A, Lettenmaier D P. Hydrologic effects of frozen soils in the upper Mississippi River basin[J]. Journal of Geophysical Research: Atmospheres, 104, 19599-19610(1999).

    [32] Kan B Y, Su F G, Xu B Q et al. Generation of high mountain precipitation and temperature data for a quantitative assessment of flow regime in the upper Yarkant Basin in the Karakoram[J]. Journal of Geophysical Research: Atmospheres, 123, 8462-8486(2018).

    [33] Meng F C, Su F G, Li Y et al. Changes in terrestrial water storage during 2003-2014 and possible causes in Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 124, 2909-2931(2019).

    [34] Su F G, Zhang L L, Ou T H et al. Hydrological response to future climate changes for the major upstream river basins in the Tibetan Plateau[J]. Global and Planetary Change, 136, 82-95(2016).

    [35] Tong K, Su F G, Yang D Q et al. Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modeling over the Tibetan Plateau[J]. Journal of Hydrology, 519, 423-437(2014).

    [36] Zhao Q D, Ding Y J, Wang J et al. Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow[J]. Journal of Hydrology, 573, 60-81(2019).

    [37] Immerzeel W W, Wanders N, Lutz A F et al. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff[J]. Hydrology and Earth System Sciences, 19, 4673-4687(2015).

    [38] Wortmann M, Bolch T, Menz C et al. Comparison and correction of high-mountain precipitation data based on Glacio-hydrological modeling in the Tarim River headwaters (high Asia)[J]. Journal of Hydrometeorology, 19, 777-801(2018).

    He SUN, Fengge SU. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. Progress in Geography, 2020, 39(7): 1126
    Download Citation