• High Power Laser and Particle Beams
  • Vol. 35, Issue 10, 101001 (2023)
Hongjian Wang1、2, Yongzhen Feng2, Bihan Luo2, Shaojun Zhang1, Yu Ma1, Jixiang Liu2, and Hongjie Liu3
Author Affiliations
  • 1Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology andBusiness University, Chongqing 400067, China
  • 2Smart Manufacturing Institute of Robot and Laser, Chongqing Technology and Business University, Chongqing 400067, China
  • 3Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.230225 Cite this Article
    Hongjian Wang, Yongzhen Feng, Bihan Luo, Shaojun Zhang, Yu Ma, Jixiang Liu, Hongjie Liu. Progress of experimental research on micro-ejection diagnosis of metal materials under intense laser loading[J]. High Power Laser and Particle Beams, 2023, 35(10): 101001 Copy Citation Text show less
    References

    [1] De Rességuier T, Signor L, Dragon A, et al. Experimental investigation of liquid spall in laser shock-loaded tin[J]. Journal of Applied Physics, 101, 013506(2007).

    [2] Walsh J M, Shreffler R G, Willig F J. Limiting conditions for jet formation in high velocity collisions[J]. Journal of Applied Physics, 24, 349-359(1953).

    [3] Jones A H, Isbell W M, Maiden C J. Measurement of the very-high-pressure properties of materials using a light-gas gun[J]. Journal of Applied Physics, 37, 3493-3499(1966).

    [4] Remiot C, Chapron P, Demay B. A flash X-ray radiography diagnostic for studing surface phenomena under shock loading[J]. AIP Conference Proceedings, 309, 1763-1766(1994).

    [5] Andriot P, Chapron P, Olive F. Ejection of material from shocked surfaces of tin, tantalum and lead-alloys[J]. AIP Conference Proceedings, 78, 505-509(1982).

    [6] Han Changsheng, Jing Fuqian, Ding Jing, . Study on the phenomena of the mass ejection from the free surface of aluminum at different dynamic loading rates[J]. Chinese Journal of High Pressure Physics, 3, 97-106(1989).

    [7] Buttler W T, Oró D M, Olson R T, et al. Second shock ejecta measurements with an explosively driven two-shockwave drive[J]. Journal of Applied Physics, 116, 103519(2014).

    [8] Chen Yongtao, Hong Renkai, Chen Haoyu, et al. Experimental examination of ejecta production on shock-melted Sn targets under various surface roughnesses[J]. Journal of Dynamic Behavior of Materials, 3, 174-179(2017).

    [9] Andriyash A V, Astashkin M V, Baranov V K, et al. Application of photon Doppler velocimetry for characterization of ejecta from shock-loaded samples[J]. Journal of Applied Physics, 123, 243102(2018).

    [10] Stöffler D, Gault D E, Wedekind J, et al. Experimental hypervelocity impact into quartz sand: distribution and shock metamorphism of ejecta[J]. Journal of Geophysical Research, 80, 4062-4077(1975).

    [11] Asay J R. Effect of shock wave risetime on material ejection from aluminum surfaces[R]. Albuquerque: Sia National Labaties, 1977.

    [12] Vogan W S, Anderson W W, Grover M, et al. Piezoelectric characterization of ejecta from shocked tin surfaces[J]. Journal of Applied Physics, 98, 113508(2005).

    [13] Li C K, Séguin F H, Frenje J A, et al. Study of direct-drive capsule implosions in inertial confinement fusion with proton radiography[J]. Plasma Physics and Controlled Fusion, 51, 014003(2009).

    [14] Tamura H, Kohama T, Kondo K, et al. Femtosecond-laser-induced spallation in aluminum[J]. Journal of Applied Physics, 89, 3520-3522(2001).

    [15] Pedrini G, Osten W, Gusev M E. High-speed digital holographic interferometry for vibration measurement[J]. Applied Optics, 45, 3456-3462(2006).

    [16] Wang Wei, Li Zuoyou, Li Xinzhu, . Study on micro-jet on ultra-high speed shadow photography[J]. Journal of Applied Optics, 29, 526-529(2008).

    [17] Kirugulige M S, Tippur H V, Denney T S. Measurement of transient deformations using digital image correlation method and high-speed photography: application to dynamic fracture[J]. Applied Optics, 46, 5083-5096(2007).

    [18] De Rességuier T, Signor L, Dragon A, et al. Dynamic fragmentation of laser shock-melted tin: experiment and modelling[J]. International Journal of Fracture, 163, 109-119(2010).

    [19] Ohira S, Fujioka S, Sunahara A, et al. X-ray backlight measurement of preformed plasma by kJ-class petawatt LFEX laser[J]. Journal of Applied Physics, 112, 063301(2012).

    [20] Zhao Cang, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific Reports, 7, 3602(2017).

    [21] Calta N P, Martin A A, Hammons J A, et al. Pressure dependence of the laser-metal interaction under laser powder bed fusion conditions probed by in situ X-ray imaging[J]. Additive Manufacturing, 32, 101084(2020).

    [22] Buttler W T, Lamoreaux S K, Schulze R K, et al. Ejecta transport, breakup and conversion[J]. Journal of Dynamic Behavior of Materials, 3, 334-345(2017).

    [23] Buttler W T, Cooley J C, Hammerberg J E, et al. Studies of reactive and nonreactive metals-ejecta-transporting nonreactive and reactive gases and vacuum[J]. AIP Conference Proceedings, 2272, 120003(2020).

    [24] Durand O, Soulard L, Colombet L, et al. Influence of the phase transitions of shock-loaded tin on microjetting and ejecta production using molecular dynamics simulations[J]. Journal of Applied Physics, 127, 175901(2020).

    [25] Soulard L, Durand O. Observation of phase transitions in shocked tin by molecular dynamics[J]. Journal of Applied Physics, 127, 165901(2020).

    [26] Germann T C, Hammerberg J E, Lee Holian B. Large-scale molecular dynamics simulations of ejecta formation in copper[J]. AIP Conference Proceedings, 706, 285-288(2004).

    [27] Wang Pei, He Anmin, Shao Jianli, et al. Numerical theetical investigations of shockinduced material ejection ejectagas mixing[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2018, 48(9): 106116.

    [28] Shao Jianli, He Anmin, Wang Pei. Brief review of research progress on numerical simulation of ejection phenomena[J]. Chinese Journal of High Pressure Physics, 33, 030110(2019).

    [29] Zellner M B, Vunni G B. Photon Doppler velocimetry (PDV) characterization of shaped charge jet formation[J]. Procedia Engineering, 58, 88-97(2013).

    [30] Georgievskaya A, Raevsky V A. Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect[J]. AIP Conference Proceedings, 1426, 1007-1010(2012).

    [31] Dimonte G, Terrones G, Cherne F J, et al. Ejecta source model based on the nonlinear Richtmyer-Meshkov instability[J]. Journal of Applied Physics, 113, 024905(2013).

    [32] Cherne F J, Hammerberg J E, Andrews M J, et al. On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum[J]. Journal of Applied Physics, 118, 185901(2015).

    [33] He Anmin, Liu Jun, Shao Jianli, . Theoretical ejecta model for elastic-plastic solids based on Richtmyer-Meshkov instability[J]. Chinese Journal of Computational Physics, 35, 505-514(2018).

    [34] Durand O, Soulard L. Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method[J]. Journal of Applied Physics, 111, 044901(2012).

    [35] Shao Jianli, Wang Pei, He Anmin, et al. Molecular dynamics study on the failure modes of aluminium under decaying shock loading[J]. Journal of Applied Physics, 113, 163507(2013).

    [36] He Anmin, Wang Pei, Shao Jianli. Molecular dynamics simulations of ejecta size distributions for shock-loaded Cu with a wedged surface groove[J]. Computational Materials Science, 98, 271-277(2015).

    [37] He Anmin, Liu Jun, Liu Chao, et al. Numerical and theoretical investigation of jet formation in elastic-plastic solids[J]. Journal of Applied Physics, 124, 185902(2018).

    [38] Soulard L, Durand O, Prat R, et al. High velocity impact of a spherical particle on a surface: theory and simulation of the jet formation[J]. Journal of Applied Physics, 129, 205104(2021).

    [39] Xu Yihua, Xu Ruicong, Cheng Hui, et al. Numerical simulation of jet breakup phenomenon during severe accident of sodium-cooled fast reactor using MPS method[J]. Annals of Nuclear Energy, 172, 109087(2022).

    [40] DeMaria A J, Stetser D A, Heynau H. Self mode-locking of lasers with saturable absorbers[J]. Applied Physics Letters, 8, 174-176(1966).

    [41] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 55, 447-449(1985).

    [42] Bahk S W, Rousseau P, Planchon T A, et al. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Optics Letters, 29, 2837-2839(2004).

    [43] Eliezer S. The interaction of high-power lasers with plasmas[J]. Plasma Physics and Controlled Fusion, 45, 181(2003).

    [44] Bin Jianhui, Lei Anle, Yu Wei. Influence of initial plasma temperature on energetic proton generation from laser-plasma interactions[J]. Chinese Journal of Lasers, 36, 1416-1419(2009).

    [45] Ma Wenjun, Liu Zhipeng, Wang Pengjie, . Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes[J]. Acta Physica Sinica, 70, 084102(2021).

    [46] Zhou Weimin, Yu Minghai, Zhang Tiankui, . High-resolution X-ray backlight radiography using picosecond petawatt laser[J]. Chinese Journal of Lasers, 47, 0500010(2020).

    [47] Cao Binghua, Zhang Yumeng, Fan Mengbao, . Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 15, 405-417(2022).

    [48] Tan Zhiyong, Wan Wenjian, Li Hua, . Progress in real-time imaging based on terahertz quantum-cascade lasers[J]. Chinese Optics, 10, 68-76(2017).

    [49] Zhang Jiaru, Guan Yingchun. Surface functional microstructure of biomedical materials prepared by ultrafast laser: a review[J]. Chinese Optics, 12, 199-213(2019).

    [50] Cauble R, Phillion D W, Hoover T J, et al. Demonstration of 0.75 Gbar planar shocks in X-ray driven colliding foils[J]. Physical Review Letters, 70, 2102-2105(1993).

    [51] Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 511, 330-333(2014).

    [52] Li Kebin, Li Xiaojie, Wang Xiaohong, et al. A simple electrometric method for parametric determination of Jones-Wilkins-Lee equation of state from underwater explosion test[J]. Journal of Applied Physics, 124, 215906(2018).

    [53] Jones D R, Fensin S J, Ndefru B G, et al. Spall fracture in additive manufactured tantalum[J]. Journal of Applied Physics, 124, 225902(2018).

    [54] Wang Xiaofeng, Liu Yang, Shi Tongya, et al. Strain rate dependence of mechanical property in a selective laser melted 17-4 PH stainless steel with different states[J]. Materials Science and Engineering:A, 792, 139776(2020).

    [55] Luo Shengnian, An Qi, Germann T C, et al. Shock-induced spall in solid and liquid Cu at extreme strain rates[J]. Journal of Applied Physics, 106, 013502(2009).

    [56] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 81, 1229-1285(2009).

    [57] Tian Chao, Yu Minghai, Shan Lianqiang, et al. Radiography of direct drive double shell targets with hard X-ray generated by a short pulse laser[J]. Nuclear Fusion, 59, 046012(2019).

    [58] Shui Min, Yu Minghai, Chu Genbai, . Observation of ejecta tin particles into polymer foam through high-energy X-ray radiograpy using high-intensity short-pulse laser[J]. Acta Physica Sinica, 68, 076201(2019).

    [59] Signor L, De Rességuier T, Dragon A, et al. Investigation of fragments size resulting from dynamic fragmentation in melted state of laser shock-loaded tin[J]. International Journal of Impact Engineering, 37, 887-900(2010).

    [60] Prudhomme G, De Rességuier T, Roland C, et al. Velocity and mass density of the ejecta produced from sinusoidal grooves in laser shock-loaded tin[J]. Journal of Applied Physics, 128, 155903(2020).

    [61] De Rességuier T, Signor L, Dragon A, et al. Spallation in laser shock-loaded tin below and just above melting on release[J]. Journal of Applied Physics, 102, 073535(2007).

    [62] Lescoute E, De Rességuier T, Chevalier J M, et al. Soft recovery technique to investigate dynamic fragmentation of laser shock-loaded metals[J]. Applied Physics Letters, 95, 211905(2009).

    [63] Morard G, De Rességuier T, Vinci T, et al. High-power laser shock-induced dynamic fragmentation of iron foils[J]. Physical Review B, 82, 174102(2010).

    [64] Loison D, De Rességuier T, Dragon A. Micro-tomography to characterize size distribution of fragments created by laser shock-induced micro-spallation of metallic sample[J]. Applied Mechanics and Materials, 556, 225-231(2014).

    [65] Lescoute E, De Rességuier T, Chevalier J M, et al. Ejection of spalled layers from laser shock-loaded metals[J]. Journal of Applied Physics, 108, 093510(2010).

    [66] Xin Jianting, Gu Yuqiu, Li Ping, . Study on metal ejection under laser shock loading[J]. Acta Physica Sinica, 61, 236201(2012).

    [67] Gauch J M. Image segmentation and analysis via multiscale gradient watershed hierarchies[J]. IEEE Transactions on Image Processing, 8, 69-79(1999).

    [68] Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International Journal of Computer Vision, 50, 271-293(2002).

    [69] He Weihua, Xin Jianting, Chu Genbai, et al. Investigation of fragment sizes in laser-driven shock-loaded tin with improved watershed segmentation method[J]. Optics Express, 22, 18924-18933(2014).

    [70] Xin Jianting, Zhao Yongqiang, Chu Genbai, . Experimental investigation of tin fragments mixing with gas subjected to laser driven shock[J]. Acta Physica Sinica, 66, 186201(2017).

    [71] De Rességuier T, Signor L, Dragon A, et al. On the dynamic fragmentation of laser shock-melted tin[J]. Applied Physics Letters, 92, 131910(2008).

    [72] Franzkowiak J E, Prudhomme G, Mercier P, et al. PDV-based estimation of ejecta particles’ mass-velocity function from shock-loaded tin experiment[J]. Review of Scientific Instruments, 89, 033901(2018).

    [73] Seisson G, Prudhomme G, Frugier P A, et al. Dynamic fragmentation of graphite under laser-driven shocks: identification of four damage regimes[J]. International Journal of Impact Engineering, 91, 68-79(2016).

    [74] Olbinado M P, Cantelli V, Mathon O, et al. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light[J]. Journal of Physics D:Applied Physics, 51, 055601(2018).

    [75] Pradel P, Malaise F, De Rességuier T, et al. Fast X-ray radiography to study the dynamic compaction mechanisms in a rigid polyurethane foam under plate impact[J]. AIP Conference Proceedings, 2272, 110010(2020).

    [76] Zhao Yongqiang, Xin Jianting, Xi Tao, . Progress on material micro-spalling under intense laser-driven loading[J]. Laser Journal, 38, 1-7(2017).

    [77] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the αε transition in shock-compressed iron via nanosecond X-ray diffraction[J]. Physical Review Letters, 95, 075502(2005).

    [78] Lindl J. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain[J]. Physics of Plasmas, 2, 3933-4024(1995).

    [79] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 11, 339-491(2004).

    [80] Tommasini R, Hatchett S P, Hey D S, et al. Development of Compton radiography of inertial confinement fusion implosions[J]. Physics of Plasmas, 18, 056309(2011).

    [81] Schick D, Borchert M, Braenzel J, et al. Laser-driven resonant magnetic soft-X-ray scattering for probing ultrafast antiferromagnetic and structural dynamics[J]. Optica, 8, 1237-1242(2021).

    [82] Bhan L, Covington C, Varga K. Signatures of atomic structure in subfemtosecond laser-driven electron dynamics in nanogaps[J]. Physical Review B, 105, 085416(2022).

    [83] Zhu Wei, Fauseweh B, Chacon A, et al. Ultrafast laser-driven many-body dynamics and Kondo coherence collapse[J]. Physical Review B, 103, 224305(2021).

    [84] Zhu Qihua, Zhou Kainan, Su Jingqin, et al. The Xingguang-III laser facility: precise synchronization with femtosecond, picosecond and nanosecond beams[J]. Laser Physics Letters, 15, 015301(2018).

    [85] Park H S, Chambers D M, Chung H K, et al. High-energy Kα radiography using high-intensity, short-pulse lasers[J]. Physics of Plasmas, 13, 056309(2006).

    [86] Kulpe S, Dierolf M, Günther B, et al. Dynamic K-edge subtraction fluoroscopy at a compact inverse-Compton synchrotron X-ray source[J]. Scientific Reports, 10, 9612(2020).

    [87] De Rességuier T, Roland C, Prudhomme G, et al. Picosecond radiography combined with other techniques to investigate microjetting from laser shock-loaded grooves[J]. AIP Conference Proceedings, 1979, 080011(2018).

    [88] Chu Genbai. High-energy X-ray radiography of laser shock loaded metal dynamic fragmentation using high-intensity short-pulse laser[J]. Review of Scientific Instruments, 89, 115106(2018).

    [89] Ye Yan, Li Jun, Zhu Pengfei, . Flash X-ray radiography for diagnosing the ejecta from shocked metal surface[J]. Chinese Journal of High Pressure Physics, 27, 398-402(2013).

    [90] Xin Jianting, He Anmin, Liu Wenbin, et al. X-ray radiography of microjetting from grooved surfaces in tin sample subjected to laser driven shock[J]. Journal of Micromechanics and Microengineering, 29, 095011(2019).

    [91] Roland C, De Rességuier T, Sollier A, et al. Ejection of micron-scale fragments from triangular grooves in laser shock-loaded copper samples[J]. Journal of Dynamic Behavior of Materials, 3, 156-163(2017).

    [92] Sollier A, Lescoute E. Characterization of the ballistic properties of ejecta from laser shock-loaded samples using high resolution picosecond laser imaging[J]. International Journal of Impact Engineering, 136, 103429(2020).

    [93] Dimonte G, Ramaprabhu P. Simulations and model of the nonlinear Richtmyer–Meshkov instability[J]. Physics of Fluids, 22, 014104(2010).

    [94] Monfared S K, Oró D M, Grover M, et al. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection[J]. Journal of Applied Physics, 116, 063504(2014).

    [95] Chen Yongtao, Hong Renkai, Tang Tiegang, . Experimental diagnostic of ejecta on Sn sample in shock melting[J]. Chinese Journal of High Pressure Physics, 30, 323-327(2016).

    [96] De Rességuier T, Prudhomme G, Roland C, et al. Material ejection from surface defects in laser shock-loaded metallic foils[J]. AIP Conference Proceedings, 2272, 120023(2020).

    [97] Prudhomme G, Franzkowiak J E, De Rességuier T, et al. Ejecta from periodical grooves in tin foils under laser-driven shock loading[J]. AIP Conference Proceedings, 1979, 080010(2018).

    [98] Zellner M B, Grover M, Hammerberg J E, et al. Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces[J]. Journal of Applied Physics, 102, 013522(2007).

    [99] He Weihua, Xi Tao, Shui Min, et al. High-energy X-ray radiography investigation on the ejecta physics of laser shock-loaded tin[J]. AIP Advances, 9, 085002(2019).

    [100] Elias P, Chapron P, Mondot M. Experimental study of the slowing down of shockinduced matter ejection into argon gas[M]Scht S C, Johnson J N, Davison L W. Shock Compression of Condensed Matter1989. Amsterdam: NthHoll, 1990.

    [101] Oro D M, Hammerberg J E, Buttler W T, et al. A class of ejecta transport test problems[J]. AIP Conference Proceedings, 1426, 1351-1354(2012).

    [102] Shui Min, Yang Xi, Yu Minghai, . Instability growth of tin-foam interface and mixing experiment[J]. Chinese Journal of Lasers, 48, 0703002(2021).

    Hongjian Wang, Yongzhen Feng, Bihan Luo, Shaojun Zhang, Yu Ma, Jixiang Liu, Hongjie Liu. Progress of experimental research on micro-ejection diagnosis of metal materials under intense laser loading[J]. High Power Laser and Particle Beams, 2023, 35(10): 101001
    Download Citation