• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 2, 020605 (2024)
Jinzhao ZOU1、3, Shizhuan XU1、3, Peng WANG1、**, Changqing CAO1, Chao YAN1, Zhiyong ZHU1, Jun LIN1、*, Yan YOU2, Junqiang LU2, and Libing ZHU2
Author Affiliations
  • 1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Shanghai Nuclear Engineering Research and Design Institute Co., Ltd., Shanghai 200233, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.020605 Cite this Article
    Jinzhao ZOU, Shizhuan XU, Peng WANG, Changqing CAO, Chao YAN, Zhiyong ZHU, Jun LIN, Yan YOU, Junqiang LU, Libing ZHU. Effects of spark plasma sintering parameters on mechanical and thermal properties of U3Si2 pellets[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020605 Copy Citation Text show less
    References

    [1] Zhou W, Zhou W Z. Enhanced thermal conductivity accident tolerant fuels for improved reactor safety - a comprehensive review[J]. Annals of Nuclear Energy, 119, 66-86(2018).

    [2] Parker S S, White J T, Hosemann P et al. Thermophysical properties of thorium mononitride from 298 to 1700 K[J]. Journal of Nuclear Materials, 526, 151760(2019).

    [3] Zinkle S J, Was G S. Materials challenges in nuclear energy[J]. Acta Materialia, 61, 735-758(2013).

    [4] Katoh Y, Snead L L. Silicon carbide and its composites for nuclear applications - Historical overview[J]. Journal of Nuclear Materials, 526, 151849(2019).

    [5] Metzger K E, Knight T W, Roberts E et al. Determination of mechanical behavior of U3Si2 nuclear fuel by microindentation method[J]. Progress in Nuclear Energy, 99, 147-154(2017).

    [6] Zinkle S J, Terrani K A, Gehin J C et al. Accident tolerant fuels for LWRs: a perspective[J]. Journal of Nuclear Materials, 448, 374-379(2014).

    [7] Johnson K D, Raftery A M, Lopes D A et al. Fabrication and microstructural analysis of UN-U3Si2 composites for accident tolerant fuel applications[J]. Journal of Nuclear Materials, 477, 18-23(2016).

    [8] Ortega L H, Blamer B J, Evans J A et al. Development of an accident-tolerant fuel composite from uranium mononitride (UN) and uranium sesquisilicide (U3Si2) with increased uranium loading[J]. Journal of Nuclear Materials, 471, 116-121(2016).

    [9] ZHANG Haiqing, LU Linyuan, WANG Peng et al. Evaluation of influence of fault tolerant fuel structure on thermal conductivity[J]. Nuclear Techniques, 44, 030602(2021).

    [10] Harp J M, Lessing P A, Hoggan R E. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation[J]. Journal of Nuclear Materials, 466, 728-738(2015).

    [11] White J T, Nelson A T, Dunwoody J T et al. Thermophysical properties of U3Si2[J]. Journal of Nuclear Materials, 464, 275-280(2015).

    [12] Zou J Z, Xu S Z, Chen J et al. Effects of spark plasma sintering parameters on the microstructure of U3Si2 pellets[J]. Journal of Nuclear Materials, 585, 154649(2023).

    [13] Carvajal-Nunez U, Saleh T A, White J T et al. Determination of elastic properties of polycrystalline U3Si2 using resonant ultrasound spectroscopy[J]. Journal of Nuclear Materials, 498, 438-444(2018).

    [14] Gong B W, Yao T K, Lei P H et al. U3Si2 and UO2 composites densified by spark plasma sintering for accident-tolerant fuels[J]. Journal of Nuclear Materials, 534, 152147(2020).

    [15] Lopes D A, Benarosch A, Middleburgh S et al. Spark plasma sintering and microstructural analysis of pure and Mo doped U3Si2 pellets[J]. Journal of Nuclear Materials, 496, 234-241(2017).

    [16] Mohamad A, Ohishi Y, Muta H et al. Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering[J]. Journal of Nuclear Science and Technology, 55, 1141-1150(2018).

    [17] Gong B W, Yao T K, Lei P H et al. Spark plasma sintering (SPS) densified U3Si2 pellets: Microstructure control and enhanced mechanical and oxidation properties[J]. Journal of Alloys and Compounds, 825, 154022(2020).

    [18] Buckley J, Goddard D T, Abram T J. Studies on the spark plasma sintering of U3Si2: processing parameters and interactions[J]. Journal of Nuclear Materials, 544, 152655(2021).

    [19] Yang K, Kardoulaki E, Zhao D et al. Uranium nitride (UN) pellets with controllable microstructure and phase - fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties[J]. Journal of Nuclear Materials, 557, 153272(2021).

    [20] Margueret A, Balice L, Popa K et al. Spark plasma sintering of UO2 nanopowders: pressure, heating rate and current effects[J]. Journal of the European Ceramic Society, 42, 6056-6066(2022).

    [21] Cavaliere P, Sadeghi B, Shabani A. Spark plasma sintering: process fundamentals[M]. Spark Plasma Sintering of Materials, 3-20.(2019).

    [22] Monchoux J P, Couret A, Durand L et al. Elaboration of metallic materials by SPS: processing, microstructures, properties, and shaping[J]. Metals, 11, 322(2021).

    [23] Matzke H, Spino J. Formation of the rim structure in high burnup fuel[J]. Journal of Nuclear Materials, 248, 170-179(1997).

    [24] Taylor K, McMurtry C. Synthesis and fabrication of refractory uranium compounds[R]. CoCarborundum(1961).

    [25] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 7, 1564-1583(1992).

    [26] Khor K A, Cheng K H, Yu L G et al. Thermal conductivity and dielectric constant of spark plasma sintered aluminum nitride[J]. Materials Science and Engineering: A, 347, 300-305(2003).

    [27] Smith D S, Alzina A, Bourret J et al. Thermal conductivity of porous materials[J]. Journal of Materials Research, 28, 2260-2272(2013).

    [28] Ranasinghe J I, Jossou E, Malakkal L et al. Study on radial temperature distribution of aluminum dispersed nuclear fuels: U3O8-Al, U3Si2-Al, and UN-Al[J]. Journal of Nuclear Engineering and Radiation Science, 4, 031020(2018).

    [29] Kaloni T P, Torres E. Thermal and mechanical properties of U3Si2: a combined ab-initio and molecular dynamics study[J]. Journal of Nuclear Materials, 533, 152090(2020).

    [30] Nix W D, Gao H J. Indentation size effects in crystalline materials: a law for strain gradient plasticity[J]. Journal of the Mechanics and Physics of Solids, 46, 411-425(1998).

    [31] Carvajal-Nunez U, Elbakhshwan M S, Mara N A et al. Mechanical properties of uranium silicides by nanoindentation and finite elements modeling[J]. JOM, 70, 203-208(2018).

    [32] Wang T, Qiu N X, Wen X D et al. First-principles investigations on the electronic structures of U3Si2[J]. Journal of Nuclear Materials, 469, 194-199(2016).

    Jinzhao ZOU, Shizhuan XU, Peng WANG, Changqing CAO, Chao YAN, Zhiyong ZHU, Jun LIN, Yan YOU, Junqiang LU, Libing ZHU. Effects of spark plasma sintering parameters on mechanical and thermal properties of U3Si2 pellets[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020605
    Download Citation