• Acta Physica Sinica
  • Vol. 68, Issue 9, 096201-1 (2019)
Qian-Ku Hu1、2、*, Yi-Ming Hou1, Qing-Hua Wu1, Shuang-Hong Qin1, Li-Bo Wang1, and Ai-Guo Zhou1
Author Affiliations
  • 1School of Materials Science and Engineering, Henan Key Laboratory of Materials on Deep-Earth Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China
  • 2State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • show less
    DOI: 10.7498/aps.68.20190158 Cite this Article
    Qian-Ku Hu, Yi-Ming Hou, Qing-Hua Wu, Shuang-Hong Qin, Li-Bo Wang, Ai-Guo Zhou. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound [J]. Acta Physica Sinica, 2019, 68(9): 096201-1 Copy Citation Text show less
    Crystal structures of the (a), (b) Nb3B3C and (c), (d) Nb4B3C2. The light brown, blue and pink spheres represent Nb, B and C atoms, respectively. The Nb6B trigonal prisms and Nb6C octahedrons are painted green and dark brown.(a), (b) Nb3B3C和(c), (d) Nb4B3C2的晶体结构(棕球, Nb原子; 蓝球, B原子; 粉球, C原子; Nb6B三棱柱和Nb6C八面体分别用绿色和褐色表示)
    Fig. 1. Crystal structures of the (a), (b) Nb3B3C and (c), (d) Nb4B3C2. The light brown, blue and pink spheres represent Nb, B and C atoms, respectively. The Nb6B trigonal prisms and Nb6C octahedrons are painted green and dark brown. (a), (b) Nb3B3C和(c), (d) Nb4B3C2的晶体结构(棕球, Nb原子; 蓝球, B原子; 粉球, C原子; Nb6B三棱柱和Nb6C八面体分别用绿色和褐色表示)
    Energy differences of Ta3B3C and Ta4B3C2 phases with respect to their most competing phases as a function of temperature.不同温度下Ta3B3C, Ta4B3C2相分别和其相应最稳定竞争组合相的自由能之差
    Fig. 2. Energy differences of Ta3B3C and Ta4B3C2 phases with respect to their most competing phases as a function of temperature. 不同温度下Ta3B3C, Ta4B3C2相分别和其相应最稳定竞争组合相的自由能之差
    Phonon dispersion curves of (a) Ta3B3C and (b) Ta4B3C2 structures.(a) Ta3B3C和(b) Ta4B3C2结构的声子色散曲线
    Fig. 3. Phonon dispersion curves of (a) Ta3B3C and (b) Ta4B3C2 structures. (a) Ta3B3C和(b) Ta4B3C2结构的声子色散曲线
    Band structures and density of states of (a), (c) Ta3B3C and (b), (d) Ta4B3C2 structures.(a), (c) Ta3B3C和(b), (d) Ta4B3C2结构的能带结构和态密度图
    Fig. 4. Band structures and density of states of (a), (c) Ta3B3C and (b), (d) Ta4B3C2 structures. (a), (c) Ta3B3C和(b), (d) Ta4B3C2结构的能带结构和态密度图
    模型晶系和空间群晶格参数(Å, degree)原子坐标
    注: a文献[17]中的实验值.
    Nb3B3C Orthorhombic Cmcma = 3.284, 3.265a, b = 28.877, 28.710a, c = 3.144, 3.129a, α = β = γ = 90 Nb1 (4c) (0, 0.2128, 0.25), Nb2 (4c) (0, 0.3620, 0.25), Nb3 (4c) (0, 0.4532, 0.25), B1 (4c) (0, 0.1120, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0790, 0.25), C (4c) (0, 0.2878, 0.25)
    Nb4B3C2Orthorhombic Cmcma = 3.257, 3.229a, b = 37.874, 37.544a, c = 3.153, 3.133a, α = β = γ = 90 Nb1 (4c) (0, 0.1621, 0.75), Nb2 (4c) (0, 0.2805, 0.75), Nb3 (4c) (0, 0.3946, 0.75), Nb4 (4c) (0, 0.4642, 0.25), B1 (4c) (0, 0.0854, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3383, 0.75)
    Ta3B3C Orthorhombic Cmcma = 3.267, b = 28.688, c = 3.133, α = β = γ = 90 Ta1 (4c) (0, 0.2121, 0.25), Ta2 (4c) (0, 0.3619, 0.25), Ta3 (4c) (0, 0.4531, 0.25), B1 (4c) (0, 0.1130, 0.25), B2 (4c) (0, 0.0155, 0.25), B3 (4c) (0, 0.0791, 0.25), C (4c) (0, 0.2874, 0.25)
    Ta4B3C2Orthorhombic Cmcma = 3.243, b = 37.609, c = 3.141, α = β = γ = 90 Ta1 (4c) (0, 0.1615, 0.75), Nb2 (4c) (0, 0.2806, 0.75), Nb3 (4c) (0, 0.3945, 0.75), Nb4 (4c) (0, 0.4641, 0.25), B1 (4c) (0, 0.0861, 0.75), B2 (4c) (0, 0.0118, 0.25), B3 (4c) (0, 0.0602, 0.25), C1 (4c) (0, 0.2202, 0.75), C2 (4c) (0, 0.3380, 0.75)
    Table 1.

    Structural parameters of the Nb3B3C, Nb4B3C2, Ta3B3C and Ta4B3C2 configurations.

    Nb3B3C, Nb4B3C2, Ta3B3C和Ta4B3C2晶体的结构参数

    TMTM3B3C TM4B3C2
    $\Delta {H_{{\rm{elements}}}}$$\Delta {H_{{\rm{comp}}}}$最稳定竞争组合$\Delta {H_{{\rm{elements}}}}$$\Delta {H_{{\rm{comp}}}}$最稳定竞争组合
    Sc–0.6370.0716ScB2 + Sc4C3 + Sc2C = 4Sc3B3C –0.5200.14410ScB2 + 4Sc4C3 + Sc2BC2 = 7Sc4B3C2
    Ti–0.8960.0199TiB2 + TiC + Ti8C5 = 6Ti3B3C –0.8630.0189TiB2 + 7TiC + Ti8C5 = 6Ti4B3C2
    V–0.6870.1013VB + C = V3B3C –0.6280.09218VB + 7C + V6C5 = 6V4B3C2
    Cr–0.2940.1593CrB + C = Cr3B3C –0.1940.1789CrB + 4C + Cr3C2 = 3Cr4B3C2
    Mn–0.1000.1953MnB + C = Mn3B3C 0.024
    Fe0.0020.139
    Co0.0940.255
    Ni0.2960.456
    Cu0.7380.959
    Zn0.7130.929
    Y–0.3850.0899YB2 + 5Y2C + Y2B3C2 = 7Y3B3C –0.2830.1606YB2 + 8Y2C + 3Y2B3C2 = 7Y4B3C2
    Zr–0.8510.0193ZrB2 + 2ZrC + Zr = 2Zr3B3C –0.8380.0203ZrB2 + 4ZrC + Zr = 2Zr4B3C2
    Nb–0.698–0.0233NbB + C = Nb3B3C –0.661–0.002C + 6Nb3B3C + Nb6C5 = 6Nb4B3C2
    Mo–0.2570.1753MoB + C = Mo3B3C –0.1550.2023MoB + C + MoC = Mo4B3C2
    Tc–0.0050.32612TcB2 + 11C + 3Tc7B3 = 11Tc3B3C 0.138
    Ru0.211–0.369
    Rh0.230–0.406
    Pd0.5520.744
    Ag1.0271.295
    Cd0.8461.112
    Hf–0.9200.0163HfB2 + 2HfC + Hf = 2Hf3B3C –0.9220.0183HfB2 + 4HfC + Hf = 2Hf4B3C2
    Ta–0.7040.0033Ta3B4 + C + 3TaC = 4Ta3B3C –0.691–0.0103Ta3B4 + C + 7TaC = 4Ta4B3C2
    W–0.0940.2273WB + C = W3B3C –0.0070.2733WB + C + WC = W4B3C2
    Re0.2810.425
    Os0.5900.755
    Ir0.6040.758
    Pt0.7080.855
    Au1.0961.310
    Hg1.1861.333
    Table 2.

    Calculated formation enthalpies of different TM3B3C and TM4B3C2 phases (eV/atom).

    不同成分TM3B3C和TM4B3C2的形成焓(eV/atom)

    结构弹性常数力学性能a硬度
    C11C22C33C44C55C66C12C13C23BGB/GHChenHTian
    注: a二元相力学性能数据来自Materials Project网站.
    Ta3B3C 569.6514.4563.5194.1180.0261.8187.1147.3173.9295.9200.81.4725.325.3
    Ta4B3C2581.1535.3602.1197.3185.1275.8200.3146.0170.2305.7209.01.4626.226.2
    Nb3B3C 544.3479.8522.8181.5171.9245.3170.9132.9162.2275.3189.71.4524.824.7
    Nb4B3C2551.5499.2548.5184.0175.1257.1183.2132.7157.8282.9195.81.4425.525.4
    TaB23022001.5124.424.5
    NbB22871951.4724.824.8
    TaC3242151.5125.625.9
    NbC2391611.4821.621.4
    SiC2131871.1433.632.2
    Al2O32321471.5818.718.7
    TiN2591801.4424.324.0
    Table 3.

    Calculated elastic constants Cij, bulk modulus B, shear modulus G, Vickers hardness HV of Ta3B3C and Ta4B3C2 configurations (GPa).

    Ta3B3C, Ta4B3C2结构的弹性常数、体弹模量、剪切模量和维氏硬度 (GPa)

    Qian-Ku Hu, Yi-Ming Hou, Qing-Hua Wu, Shuang-Hong Qin, Li-Bo Wang, Ai-Guo Zhou. Theoretical calculations of stabilities and properties of transition metal borocarbides TM3B3C and TM4B3C2 compound [J]. Acta Physica Sinica, 2019, 68(9): 096201-1
    Download Citation