• Advanced Photonics Nexus
  • Vol. 2, Issue 2, 024001 (2023)
Xin Wang1、2、3、†, Zilong Zhang1、2、3、*, Xing Fu4、5, Adnan Khan6, Suyi Zhao1、2、3, Yuan Gao1、2、3, Yuchen Jie1、2、3, Wei He1、2、3, Xiaotian Li1、2、3, Qiang Liu4、5、*, and Changming Zhao1、2、3
Author Affiliations
  • 1Beijing Institute of Technology, School of Optics and Photonics, Beijing, China
  • 2Ministry of Education, Key Laboratory of Photoelectronic Imaging Technology and System, Beijing, China
  • 3Ministry of Industry and Information Technology, Key Laboratory of Photonics Information Technology, Beijing, China
  • 4Tsinghua University, Ministry of Education, Key Laboratory of Photonic Control Technology, Beijing, China
  • 5Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China
  • 6Nankai University, School of Physics, Key Laboratory of Weak Light Nonlinear Photonics, Tianjin, China
  • show less
    DOI: 10.1117/1.APN.2.2.024001 Cite this Article Set citation alerts
    Xin Wang, Zilong Zhang, Xing Fu, Adnan Khan, Suyi Zhao, Yuan Gao, Yuchen Jie, Wei He, Xiaotian Li, Qiang Liu, Changming Zhao. Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations[J]. Advanced Photonics Nexus, 2023, 2(2): 024001 Copy Citation Text show less
    References

    [1] T. H. Maiman. Stimulated optical radiation in ruby. Nature, 187, 493-494(1960).

    [2] Y. S. Kivshar et al. Dynamics of optical vortex solitons. Opt. Commun., 152, 198-206(1998).

    [3] F. Encinas-Sanz, S. Melle, O. G. Calderón. Time-resolved dynamics of two-dimensional transverse patterns in broad area lasers. Phys. Rev. Lett., 93, 213904(2004).

    [4] P. Ryczkowski et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics, 12, 221-227(2018).

    [5] A. Giesen, J. Speiser. Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Sel. Top. Quantum Electron., 13, 598-609(2007).

    [6] H. Daido, M. Nishiuchi, A. S. Pirozhkov. Review of laser-driven ion sources and their applications. Rep. Prog. Phys., 75, 56401(2012).

    [7] M. N. Zervas, C. A. Codemard. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron., 20, 219-241(2014).

    [8] Y. Yang et al. Whispering-gallery mode hexagonal micro-/nanocavity lasers [invited]. Photonics Res., 7, 594-131(2019).

    [9] C. Lecompte et al. Laser temporal-coherence effects on multiphoton ionization processes. Phys. Rev. A, 11, 1009-1015(1975).

    [10] M. Skowronek. Investigation of laser temporal pulse duration on Rayleigh scattering. Phys. Rev. A, 27, 3349-3350(1983).

    [11] V. Hohreiter, J. E. Carranza, D. W. Hahn. Temporal analysis of laser-induced plasma properties as related to laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc., 59, 327-333(2004).

    [12] O. Lundh et al. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys., 7, 219-222(2011).

    [13] T. Herr et al. Temporal solitons in optical microresonators. Nat. Photonics, 8, 145-152(2014).

    [14] P. K. Maroju et al. Attosecond pulse shaping using a seeded free-electron laser. Nature, 578, 386-391(2020).

    [15] S. P. Obenschain et al. Laser-target interaction with induced spatial incoherence. Phys. Rev. Lett., 56, 2807-2810(1986).

    [16] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photonics, 3, 161(2011).

    [17] Y. Shen et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl, 10, 50(2021).

    [18] C. Rosales-Guzmán, B. Ndagano, A. Forbes. A review of complex vector light fields and their applications. J. Opt., 20, 123001(2018).

    [19] F. Ferdous et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat. Photonics, 5, 770-776(2011).

    [20] A. Hugi et al. Mid-infrared frequency comb based on a quantum cascade laser. Nature, 492, 229-233(2012).

    [21] G. Herink et al. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics, 10, 321-326(2016).

    [22] W. Liang et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun., 6, 7957(2015).

    [23] C. R. Petersen et al. Mid-infrared supercontinuum covering the 1.413.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat. Photonics, 8, 830-834(2014). https://doi.org/10.1038/nphoton.2014.213

    [24] J. Geng. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photonics, 3, 128-160(2011).

    [25] C. Maurer et al. What spatial light modulators can do for optical microscopy. Laser Photonics Rev., 5, 81-101(2011).

    [26] R. Heintzmann, M. Gustafsson. Subdiffraction resolution in continuous samples. Nat. Photonics, 3, 362-364(2009).

    [27] J. Huisken et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007-1009(2004).

    [28] A. Belmonte, J. P. Torres. Optical Doppler shift with structured light. Opt. Lett., 36, 4437-4439(2011).

    [29] C. Rosales-Guzmán et al. Experimental detection of transverse particle movement with structured light. Sci. Rep., 3, 2815(2013).

    [30] B. Aniceto et al. A measure of flow vorticity with helical beams of light. Optica, 2, 1002-1005(2015).

    [31] J. Wang et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [32] J. Wang. Advances in communications using optical vortices. Photonics Res., 4, B14-B28(2016).

    [33] L. Gong et al. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [34] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [35] C. Kuo, S. Chu. Numerical study of the properties of optical vortex array laser tweezers. Opt. Express, 21, 26418-26431(2013).

    [36] W. Mike et al. Advanced optical trapping by complex beam shaping. Laser Photonics Rev., 7, 839-854(2013).

    [37] X. L. Wang et al. Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 518, 516(2015).

    [38] B. Ndagano et al. Creation and detection of vector vortex modes for classical and quantum communication. J. Lightwave Technol., 36, 292-301(2018).

    [39] A. Sit et al. High-dimensional intracity quantum cryptography with structured photons. Optica, 4, 1006(2017).

    [40] A. Forbes. Structured light from lasers. Laser Photonics Rev., 13, 1900140(2019).

    [41] Y. F. Chen et al. Laser transverse modes of spherical resonators: a review [Invited]. Chin. Opt. Lett., 18, 91404(2020).

    [42] A. Forbes, M. D. Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 15, 253-262(2021).

    [43] M. V. Berry, M. R. Dennis. Roadmap on structured light. J. Opt., 2, 013001(2017).

    [44] O. V. Angelsky et al. Structured light: ideas and concepts. Front. Phys., 8, 114(2020).

    [45] J. Wang et al. Generation and detection of structured light. Front. Phys., 9, 688284(2021).

    [46] C. D. E. Otte. Optical trapping gets structure: structured light for advanced optical manipulation. Appl. Phys. Rev., 7, 41308(2020).

    [47] Y. Yang et al. Optical trapping with structured light. Adv. Photonics, 3, 34001(2021).

    [48] M. A. Cox et al. Structured light in turbulence. IEEE J. Sel. Top. Quantum Electron., 2, 1-21(2020).

    [49] L. Feng et al. A review of tunable orbital angular momentum modes in fiber: principle and generation. Appl. Sci., 9, 2408(2019).

    [50] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 8, 90(2019).

    [51] J. Ni et al. Multidimensional phase singularities in nanophotonics. Science, 374, 418(2021).

    [52] C. He, Y. Shen, A. Forbes. Towards higher-dimensional structured light. Light Sci. Appl., 11, 205(2022).

    [53] A. H. Dorrah, F. Capasso. Tunable structured light with flat optics. Science, 376, 367(2022).

    [54] W. T. Buono, A. Forbes. Nonlinear optics with structured light. Opto-Electron Adv., 5, 210174(2022).

    [55] N. G. Basov, V. N. Morozov, A. N. Oraevskiǐ. Nonlinear mode interaction in lasers. Sov. J. Exp. Theor. Phys., 22, 895-904(1966).

    [56] A. F. Suchkov. Effect of inhomogeneities on the operation regime of solid-state lasers. Sov. J. Exp. Theor. Phys., 49, 1495-1903(1966).

    [57] R. Graham, H. Haken. Laserlight–first example of a second-order phase transition far away from thermal equilibrium. Ztschr. Phys., 237, 31-46(1970).

    [58] V. E. Zakharov, A. B. Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. J. Exp. Theor. Phys., 34, 62-69(1972).

    [59] M. V. Berry, J. F. Nye, F. J. Wright. The elliptic umbilic diffraction catastrophe. Philos. Trans. R. Soc. A, 291, 453-484(1979).

    [60] K. I. Kubodera, K. Otsuka. Single-transverse-mode LiNdP4O12 slab waveguide laser. J. Appl. Phys., 50, 653-659(1979). https://doi.org/10.1063/1.326025

    [61] N. B. Baranova et al. Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment). JETP Lett., 33, 195(1981).

    [62] L. A. Lugiato, L. M. Narducci, C. Oldano. Cooperative frequency locking and stationary spatial structures in lasers. J. Opt. Soc. Am. B, 5, 879(1988).

    [63] P. Coullet, L. Gil, F. Rocca. Optical vortices. Opt. Commun., 73, 403-408(1989).

    [64] J. V. Moloney, A. C. Newell. Nonlinear optics. Physica D, 44, 1-37(1990).

    [65] L. A. Lugiato et al. Instabilities and spatial complexity in a laser. J. Opt. Soc. Am. B, 7, 1019-1033(1990).

    [66] Q. S. Yang et al. Global stability and oscillation properties of a two-level model for a class-B laser with feedback. Opt. Commun., 138, 325-329(1997).

    [67] G. L. Oppo, G. D Alessandro, W. J. Firth. Spatiotemporal instabilities of lasers in models reduced via center manifold techniques. Phys. Rev. A, 44, 4712-4720(1991).

    [68] F. T. Arecchi et al. Deterministic chaos in laser with injected signal. Opt. Commun., 51, 308-314(1984).

    [69] W. Greiner. Classical electrodynamics. Phys. Today, 52, 78(1999).

    [70] C. Coste. Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B, 2, 245-253(1998).

    [71] E. A. Arecchi. Pattern formation and competition in nonlinear optics. Phys. Rep., 318, 1-83(1999).

    [72] Y. Castin, K. Mo Lmer. Maxwell–Bloch equations: a unified view of nonlinear optics and nonlinear atom optics. Phys. Rev. A, 51, R3426(1995).

    [73] K. Staliunas. Laser Ginzburg–Landau equation and laser hydrodynamics. Phys. Rev. A, 48, 1573(1993).

    [74] K. Staliunas, C. O. Weiss. Tilted and standing waves and vortex lattices in class-A lasers. Physica D, 81, 79-93(1995).

    [75] J. Swift, P. C. Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 15, 319-328(1977).

    [76] K. Staliunas, C. O. Weiss. Nonstationary vortex lattices in large-aperture class B lasers. J. Opt. Soc. Am. B, 12, 1142(1995).

    [77] G. Huyet et al. Spatiotemporal dynamics of lasers with a large Fresnel number. Phys. Rev. Lett., 75, 4027-4030(1995).

    [78] Y. Kuramoto, T. Yamada. Pattern formation in oscillatory chemical reactions. Prog. Theor. Phys., 55, 356(1976).

    [79] R. Lefever et al. Phase dynamics of transverse diffraction patterns in the laser. Phys. Lett. A, 135, 254-258(1989).

    [80] N. A. Kudryashov. Exact solutions of the generalized Kuramoto–Sivashinsky equation. Phys. Lett. A, 147, 287-291(1990).

    [81] B. J. Gluckman et al. Time averaging of chaotic spatiotemporal wave patterns. Phys. Rev. Lett., 71, 2034(1993).

    [82] L. A. Lugiato. Nonlinear optical structures, patterns and chaos. Chaos Soliton. Fract., 4, 1251-1258(1994).

    [83] P. Mandel, M. Tlidi. Transverse dynamics in cavity nonlinear optics. J. Opt. B, 6, R60(2004).

    [84] Y. F. Chen, Y. P. Lan. Formation of optical vortex lattices in solid-state microchip lasers: spontaneous transverse mode locking. Phys. Rev. A, 64, 63807(2001).

    [85] Y. F. Chen, Y. P. Lan. Transverse pattern formation of optical vortices in a microchip laser with a large Fresnel number. Phys. Rev. A, 65, 13802(2001).

    [86] G. D’Alessandro et al. Average patterns and coherent phenomena in wide aperture lasers. Phys. Rev. E, 69, 66212(2004).

    [87] J. Scheuer, M. Orenstein. Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities. Science, 285, 230-233(1999).

    [88] K. Otsuka, S. Chu. Generation of vortex array beams from a thin-slice solid-state laser with shaped wide-aperture laser-diode pumping. Opt. Lett., 34, 10-12(2009).

    [89] Y. Shen et al. Vortex lattices with transverse-mode-locking states switching in a large-aperture off-axis-pumped solid-state laser. J. Opt. Soc. Am. B, 35, 2940(2018).

    [90] L. Allen et al. Orbital angular momentum of light and transformation of Laguerre Gaussian laser modes. Phys. Rev. A, 45, 8185-8189(1992).

    [91] M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian modes of the paraxial wave equation and stable resonators. J. Opt. Soc. Am. A:, 21, 873-880(2004).

    [92] J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 58, 1499-1501(1987).

    [93] V. Garcés-Chávez et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys. Rev. Lett., 91, 93602(2003).

    [94] R. P. Macdonald et al. Interboard optical data distribution by Bessel beam shadowing. Opt. Commun., 122, 169-177(1996).

    [95] Y. Li et al. Classically-entangled Ince–Gaussian modes. Appl. Phys. Lett., 22, 221105(2020).

    [96] J. C. Gutierrez-Vega, M. A. Bandres. Helmholtz–Gauss waves. J. Opt. Soc. Am. A:, 22, 289-298(2005).

    [97] P. W. Smith. Simultaneous phase-locking of longitudinal and transverse laser modes. Appl. Phys. Lett., 13, 235-237(1968).

    [98] D. H. Auston. Forced and spontaneous phase locking of the transverse modes of a He–Ne laser. IEEE J. Quantum Electron., 4, 471-473(1968).

    [99] Z. Zhang, C. Zhao. Spontaneous phase and frequency locking of transverse modes in different orders. Phys. Rev. Appl, 13, 24010(2020).

    [100] S. Mahler et al. Improved phase locking of laser arrays with nonlinear coupling. Phys. Rev. Lett., 124, 133901(2020).

    [101] A. N. K. Reddy et al. Phase locking of lasers with Gaussian coupling. Opt. Express, 30, 1114-1129(2022).

    [102] M. Brambilla et al. Transverse laser patterns. I. Phase singularity crystals. Phys. Rev. A, 43, 5090(1991).

    [103] L. G. Wright, D. N. Christodoulides, F. W. Wise. Spatiotemporal mode-locking in multimode fiber lasers. Science, 358, 94-97(2017).

    [104] H. Qin et al. Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser. Opt. Lett., 43, 1982-1985(2018).

    [105] Y. Ding et al. Multiple-soliton in spatiotemporal mode-locked multimode fiber lasers. Opt. Express, 27, 11435(2019).

    [106] T. Mayteevarunyoo, B. A. Malomed, D. V. Skryabin. Spatiotemporal dissipative solitons and vortices in a multi-transverse-mode fiber laser. Opt. Express, 27, 37364(2019).

    [107] L. G. Wright et al. Mechanisms of spatiotemporal mode-locking. Nat. Phys., 16, 565-570(2020).

    [108] M. Bagci, J. N. Kutz. Spatiotemporal mode locking in quadratic nonlinear media. Phys. Rev. E, 102, 22205(2020).

    [109] X. Lin et al. All few-mode fiber spatiotemporal mode-locked figure-eight laser. J. Lightwave Technol., 39, 5611-5616(2021).

    [110] Y. Ding et al. Spatiotemporal mode-locking in lasers with large modal dispersion. Phys. Rev. Lett., 126, 93901(2021).

    [111] F. Frei, A. Galler, T. Feurer. Space-time coupling in femtosecond pulse shaping and its effects on coherent control. J. Chem. Phys., 130, 34302(2009).

    [112] G. Pariente et al. Space-time characterization of ultra-intense femtosecond laser beams. Nat. Photonics, 10, 547-553(2016).

    [113] Y. Wang et al. High-power mode-locked 2  μm multimode fiber laser. Laser Phys. Lett., 15, 85101(2018). https://doi.org/10.1088/1612-202X/aac429

    [114] M. Kowalczyk et al. Ultrabroadband wavelength-swept source based on total mode-locking of an Yb:CaF2 laser. Photonics Res., 7, 182(2019). https://doi.org/10.1364/PRJ.7.000182

    [115] K. Krupa et al. Multimode nonlinear fiber optics, a spatiotemporal avenue. APL Photonics, 4, 110901(2019).

    [116] W. H. Renninger, A. Chong, F. W. Wise. Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers. IEEE J. Sel. Top. Quantum. Electron., 18, 389-398(2012).

    [117] A. Chong, L. G. Wright, F. W. Wise. Ultrafast fiber lasers based on self-similar pulse evolution: a review of current progress. Rep. Prog. Phys., 78, 113901(2015).

    [118] A. Chong et al. Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum. Nat. Photonics, 14, 350-354(2020).

    [119] A. Mirando et al. Generation of spatiotemporal optical vortices with partial temporal coherence. Opt. Express, 29, 30426(2021).

    [120] Q. Cao et al. Sculpturing spatiotemporal wavepackets with chirped pulses. Photonics Res., 9, 2261(2021).

    [121] H. E. Kondakci, A. F. Abouraddy. Diffraction-free space-time light sheets. Nat. Photonics, 11, 733-740(2017).

    [122] M. Dallaire, N. McCarthy, M. Piché. Spatiotemporal Bessel beams: theory and experiments. Opt. Express, 17, 18148-18164(2009).

    [123] B. Sun et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci. Appl., 7, 17117(2018).

    [124] H. E. Kondakci, A. F. Abouraddy. Diffraction-free pulsed optical beams via space-time correlations. Opt. Express, 24, 28659(2016).

    [125] M. Mounaix et al. Time reversed optical waves by arbitrary vector spatiotemporal field generation. Nat. Commun., 11, 5813(2020).

    [126] C. Wan et al. Toroidal vortices of light. Nat. Photonics, 16, 519-522(2022).

    [127] A. Beržanskis et al. Sum-frequency mixing of optical vortices in nonlinear crystals. Opt. Commun., 150, 372-380(1998).

    [128] Y. Li et al. Sum frequency generation with two orbital angular momentum carrying laser beams. J. Opt. Soc. Am. B, 32, 407(2015).

    [129] Y. Li et al. Dynamic mode evolution and phase transition of twisted light in nonlinear process. J. Mod. Opt., 63, 2271-2278(2016).

    [130] D. G. Pires et al. Mixing Ince–Gaussian modes through sum-frequency generation. J. Opt. Soc. Am. B, 37, 2815(2020).

    [131] K. Dholakia et al. Second-harmonic generation and the orbital angular momentum of light. Phys. Rev. A, 54, R3742-R3745(1996).

    [132] J. Courtial et al. Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre–Gaussian modes. Phys. Rev. A, 56, 4193-4196(1997).

    [133] H. Yu et al. Generation of crystal-structure transverse patterns via a self-frequency-doubling laser. Sci. Rep., 3, 1085(2013).

    [134] S. Li et al. Managing orbital angular momentum in second-harmonic generation. Phys. Rev. A, 88, 035801(2013).

    [135] W. T. Buono et al. Arbitrary orbital angular momentum addition in second harmonic generation. New J. Phys., 16, 93041(2014).

    [136] Z. Zhou et al. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Opt. Express, 22, 20298(2014).

    [137] L. J. Pereira et al. Orbital-angular-momentum mixing in type-II second-harmonic generation. Phys. Rev. A, 96, 053856(2017).

    [138] Y. Tang et al. Harmonic spin-orbit angular momentum cascade in nonlinear optical crystals. Nat. Photonics, 14, 658-662(2020).

    [139] D. G. Pires et al. Optical mode conversion through nonlinear two-wave mixing. Phys. Rev. A, 100(2019).

    [140] D. G. Pires et al. Higher radial orders of Laguerre–Gaussian beams in nonlinear wave mixing processes. J. Opt. Soc. Am. B, 37, 1328(2020).

    [141] D. S. Ding et al. Linear up-conversion of orbital angular momentum. Opt. Lett., 37, 3270-3272(2012).

    [142] G. Walker, A. S. Arnold, S. Franke-Arnold. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor. Phys. Rev. Lett., 108, 243601(2012).

    [143] H. Yang et al. Parametric upconversion of Ince–Gaussian modes. Opt. Lett., 45, 3034-3037(2020).

    [144] X. Y. Z. Xiong et al. Mixing of spin and orbital angular momenta via second-harmonic generation in plasmonic and dielectric chiral nanostructures. Phys. Rev. B, 95, 165432(2017).

    [145] H. Wu et al. Radial modal transitions of Laguerre–Gauss modes during parametric up-conversion: towards the full-field selection rule of spatial modes. Phys. Rev. A, 101, 063805(2020).

    [146] H. Sroor et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 14, 498-503(2020).

    [147] T. Bell, M. Kgomo, S. Ngcobo. Digital laser for on-demand intracavity selective excitation of second harmonic higher-order modes. Opt. Express, 28, 16907(2020).

    [148] A. Srinivasa Rao, K. Miamoto, T. Omatsu. Ultraviolet intracavity frequency-doubled Pr3+:LiYF4 orbital Poincaré laser. Opt. Express, 28, 37397(2020). https://doi.org/10.1364/OE.411624

    [149] Z. Zhang et al. Second harmonic generation of laser beams in transverse mode locking states. Adv. Photonics, 2, 026002(2022).

    [150] M. C. Cross, P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys., 65, 851-1112(1993).

    [151] M. Saffman. Optical pattern formation. Adv. At. Mol. Opt. Phys., 40, 229-306(1998).

    [152] J. Joly, G. Metivier, J. Rauch. Transparent nonlinear geometric optics and Maxwell–Bloch equations. J. Differ. Equ., 166, 175-250(2000).

    [153] Y. F. Chen, Y. P. Lan. Dynamics of the Laguerre Gaussian TEM0,l mode in a solid-state laser. Phys. Rev. A, 6, 63807(2001). https://doi.org/10.1103/PhysRevA.63.063807

    [154] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130-141(1963).

    [155] N. B. Abraham, W. J. Firth. Overview of transverse effects in nonlinear-optical systems. J. Opt. Soc. Am. B, 7, 951(1990).

    [156] P. Coullet, C. Riera, C. Tresser. Stable static localized structures in one dimension. Phys. Rev. Lett., 84, 3069(2000).

    [157] K. I. Maruno, A. Ankiewicz, N. Akhmediev. Exact soliton solutions of the one-dimensional complex Swift–Hohenberg equation. Physica D, 176, 44-66(2003).

    [158] B. J. Tepper. Consequences of abusive supervision. Acad. Manage. J., 43, 178-190(2000).

    [159] Y. F. Chen, Y. P. Lan. Dynamics of helical-wave emission in a fiber-coupled diode end-pumped solid-state laser. Appl. Phys. B, 73, 11-14(2001).

    [160] M. A. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda. Parabolic nondiffracting optical wave fields. Opt. Lett., 29, 44(2004).

    [161] B. Zhao et al. Parabolic-accelerating vector waves. Nanophotonics, 11, 681-688(2022).

    [162] H. Kogelnik, T. Li. Laser beams and resonators. Appl. Opt., 5, 1550-1567(1966).

    [163] Z. Wan et al. Quadrant-separable multi-singularity vortices manipulation by coherent superposed mode with spatial-energy mismatch. Opt. Express, 26, 34940(2018).

    [164] M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian beams. Opt. Lett., 29, 144(2004).

    [165] S. C. Chu, K. Otsuka. Numerical study for selective excitation of Ince–Gaussian modes in end-pumped solid-state lasers. Opt. Express, 15, 16506-16519(2008).

    [166] N. Barré, M. Romanelli, M. Brunel. Role of cavity degeneracy for high-order mode excitation in end-pumped solid-state lasers. Opt. Lett., 39, 1022-1025(2014).

    [167] D. Mcgloin, K. Dholakia. Bessel beams: diffraction in a new light. Contemp. Phys., 46, 15-28(2005).

    [168] V. Garcés-Chávez et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419, 145-147(2002).

    [169] J. C. Gutiérrez-Vega et al. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 25, 1493-1495(2000).

    [170] J. C. Gutiérrez-Vega et al. Experimental demonstration of optical Mathieu beams. Opt. Commun., 195, 35-40(2001).

    [171] S. Chávez-Cerda et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. Soc. Am. B, 4, S52-S57(2002).

    [172] G. A. Siviloglou, D. N. Christodoulides. Accelerating finite energy Airy beams. Opt. Lett., 32, 979-981(2007).

    [173] G. A. Siviloglou et al. Observation of accelerating Airy beams. Phys. Rev. Lett., 4, S52(2007).

    [174] Y. Shen et al. SU(2) Poincaré sphere: a generalized representation for multidimensional structured light. Phys. Rev. A, 102, 031501(2020).

    [175] E. Abramochkin, T. Alieva. Closed-form expression for mutual intensity evolution of Hermite–Laguerre–Gaussian Schell-model beams. Opt. Lett., 42, 4032(2017).

    [176] W. N. Plick et al. Quantum orbital angular momentum of elliptically symmetric light. Phys. Rev. A, 87, 033806(2013).

    [177] Y. Shen et al. Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) geometric modes in a frequency-degenerate resonator. Appl. Opt., 57, 9543(2018).

    [178] Y. Shen et al. Hybrid topological evolution of multi-singularity vortex beams: generalized nature for helical-Ince–Gaussian and Hermite–Laguerre-Gaussian modes. J. Opt. Soc. Am. A:, 36, 578(2019).

    [179] M. J. Padgett, J. Courtial. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett., 24, 430-432(1999).

    [180] E. Abramochkin, V. Volostnikov. Beam transformations and nontransformed beams. Opt. Commun., 83, 123-135(1991).

    [181] M. W. Beijersbergen et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Opt. Commun., 96, 123-132(1993).

    [182] E. G. Abramochkin, V. G. Volostnikov. Generalized Gaussian beams. J. Opt. A, 6, S157(2004).

    [183] E. G. Abramochkin, V. G. Volostnikov. Generalized Hermite–Laguerre–Gauss beams. Phys. Wave Phenom., 18, 14-22(2010).

    [184] Y. Shen, X. Fu, M. Gong. Truncated triangular diffraction lattices and orbital-angular-momentum detection of vortex SU(2) geometric modes. Opt. Express, 26, 25545(2018).

    [185] Y. Shen et al. Structured ray-wave vector vortex beams in multiple degrees of freedom from a laser. Optica, 7, 820(2020).

    [186] M. Woerdemann, C. Alpmann, C. Denz. Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams. Appl. Phys. Lett., 98, 111101(2011).

    [187] J. A. Davis et al. Generation of helical Ince–Gaussian beams: beam-shaping with a liquid crystal display. Proc. SPIE, 6290, 62900R(2006).

    [188] J. B. Bentley et al. Generation of helical Ince–Gaussian beams with a liquid-crystal display. Opt. Lett., 31, 649-651(2006).

    [189] S. M. Baumann et al. Propagation dynamics of optical vortices due to Gouy phase. Opt. Express, 17, 9818-9827(2009).

    [190] E. Louvergneaux et al. Coupled longitudinal and transverse self-organization in lasers induced by transverse-mode locking. Phys. Rev. A, 57, 4899-4904(1998).

    [191] Y. F. Chen, K. F. Huang, Y. P. Lan. Spontaneous transverse patterns in a microchip laser with a frequency-degenerate resonator. Opt. Lett., 28, 1811-1813(2003).

    [192] A. S. Rao et al. Optical vortex lattice mode generation from a diode-pumped Pr3+:LiYF4 laser. J. Opt., 23, 75502(2021). https://doi.org/10.1088/2040-8986/ac067d

    [193] Y. Cao et al. Transverse patterns and dual-frequency lasing in a low-noise nonplanar-ring orbital-angular-momentum oscillator. Phys. Rev. Appl., 13, 024067(2020).

    [194] X. Wang et al. Investigation on the formation of laser transverse pattern possessing optical lattices. Front. Phys., 9, 801916(2022).

    [195] E. Louvergneaux et al. Transverse mode competition in a CO2 laser. Phys. Rev. A, 53, 4435(1996). https://doi.org/10.1103/PhysRevA.53.4435

    [196] R. Oron et al. Laser mode discrimination with intra-cavity spiral phase elements. Opt. Commun., 169, 115-121(1999).

    [197] K. Sueda et al. Laguerre–Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses. Opt. Express, 12, 3548-3553(2004).

    [198] W. M. Lee, X. C. Yuan, W. C. Cheong. Optical vortex beam shaping by use of highly efficient irregular spiral phase plates for optical micromanipulation. Opt. Lett., 29, 1796-1798(2004).

    [199] D. J. Kim, J. W. Kim. High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration. Appl. Phys. B, 121, 401-405(2015).

    [200] D. J. Kim, J. I. Mackenzie, J. W. Kim. Adaptable beam profiles from a dual-cavity Nd:YAG laser. Opt. Lett., 41, 1740-1743(2016).

    [201] L. Marrucci, C. Manzo, D. Paparo. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett., 96, 163905(2006).

    [202] L. Marrucci. The q-plate and its future. J. Nanophotonics, 7, 078598(2013).

    [203] B. Piccirillo et al. Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate. Appl. Phys. Lett., 97, 241104(2010).

    [204] D. Naidoo et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [205] R. R. Alfano, G. Milione, E. J. Galvez, L. Shi. A laser for complex spatial modes. Nat. Photonics, 10, 286-288(2016).

    [206] S. Ngcobo et al. A digital laser for on-demand laser modes. Nat. Commun., 4, 2289(2013).

    [207] L. Burger et al. Implementation of a spatial light modulator for intracavity beam shaping. J. Opt., 17, 15604(2015).

    [208] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics, 8, 200(2016).

    [209] S. Scholes et al. Structured light with digital micromirror devices: a guide to best practice. Opt. Eng., 59, 041202(2020).

    [210] C. W. Johnson et al. Exact design of complex amplitude holograms for producing arbitrary scalar fields. Opt. Express, 28, 17334-17346(2020).

    [211] C. Rosales-Guzmán et al. Polarisation-insensitive generation of complex vector modes from a digital micromirror device. Sci. Rep., 10, 10434(2020).

    [212] P. Chen et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics. Adv. Mater., 32, 1903665(2019).

    [213] Y. Shen, C. Rosales-Guzmán. Nonseparable states of light: from quantum to classical. Laser Photonics Rev., 16, 2100533(2022).

    Xin Wang, Zilong Zhang, Xing Fu, Adnan Khan, Suyi Zhao, Yuan Gao, Yuchen Jie, Wei He, Xiaotian Li, Qiang Liu, Changming Zhao. Evolution on spatial patterns of structured laser beams: from spontaneous organization to multiple transformations[J]. Advanced Photonics Nexus, 2023, 2(2): 024001
    Download Citation