• Matter and Radiation at Extremes
  • Vol. 6, Issue 5, 054403 (2021)
Hidenori Terasaki1、2、a), Tatsuhiro Sakaiya1, Keisuke Shigemori3, Kosaku Akimoto1, Hiroki Kato3, Yoichiro Hironaka3, and Tadashi Kondo1
Author Affiliations
  • 1Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
  • 2Department of Earth Sciences, Graduate School of Science and Technology, Okayama University, Okayama 700-8530, Japan
  • 3Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
  • show less
    DOI: 10.1063/5.0029448 Cite this Article
    Hidenori Terasaki, Tatsuhiro Sakaiya, Keisuke Shigemori, Kosaku Akimoto, Hiroki Kato, Yoichiro Hironaka, Tadashi Kondo. In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation[J]. Matter and Radiation at Extremes, 2021, 6(5): 054403 Copy Citation Text show less
    References

    [1] D. C.Rubie, S. A.Jacobson, H.Terasaki, and H.Terasaki, R. A.Fischer. Mechanisms and geochemical models of core formation. Deep Earth: Physics and Chemistry of the Lower Mantle and Core, 181-190(2016).

    [2] C. B.Agee, M. C.Shannon. Percolation of core melts at lower mantle conditions. Science, 280, 1059(1998).

    [3] F.Langenhorst, H.Terasaki, D. J.Frost, D. C.Rubie. Interconnectivity of Fe–O–S liquid in polycrystalline silicate perovskite at lower mantle conditions. Phys. Earth Planet. Inter., 161, 170(2007).

    [4] Y.Bando, M.Mitome, F.Xu, S.Ono, N.Takafuji, K.Hirose. Segregation of core melts by permeable flow in the lower mantle. Earth Planet. Sci. Lett., 224, 249(2004).

    [5] Y.Meng, L.Zhang, W. L.Mao, Y.Liu, C. Y.Shi, W.Yang, J. C.Andrews, J.Wang. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions. Nat. Geosci., 6, 971(2013).

    [6] H.Mizutani, T.Yamamoto, R.Honda. Numerical simulation of Earth’s core formation. J. Geophys. Res., 98, 2075(1993).

    [7] P. J.Tackley, H.Samuel. Dynamics of core formation and equilibration by negative diapirism. Geochem., Geophys., Geosyst., 9, Q06011(2008).

    [8] D. H.Sharp. An overview of Rayleigh–Taylor instability. Physica D, 12, 3(1984).

    [9] S.Chandrasekhar. Hydrodynamic and Hydromagnetic Stability(1968).

    [10] S. W.Haan. Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes. Phys. Rev. A, 39, 5812(1989).

    [11] D. J.Stevenson. Models of the Earth’s core. Science, 214, 611(1981).

    [12] S.Sasaki, K.Nakazawa. Metal-silicate fractionation in the growing Earth: Energy source for the terrestrial magma ocean. J. Geophys. Res., 91, 9231(1986).

    [13] T.Spohn, R.Ziethe. Two-dimensional Stokes flow around a heated cylinder: A possible application for diapirs in the mantle. J. Geophys. Res., 112, B09403(2007).

    [14] P.Olson, D.Weeraratne. Experiments on metal–silicate plumes and core formation. Philos. Trans. R. Soc., A, 366, 4253(2008).

    [15] K.Mima, K.Shigemori, H.Azechi, K.Meguro, H.Takabe, M.Honda, M.Nakai, N.Miyanaga. Measurements of Rayleigh-Taylor growth rate of planar targets irradiated directly by partially coherent light. Phys. Rev. Lett., 78, 250(1997).

    [16] H.Azechi, H.Takabe, H.Shiraga, T.Yamanaka, M.Matsuoka, K.Shigemori, M.Nakai, N.Izumi, A.Sunahara, T.Sakaiya. Ablative Rayleigh-Taylor instability at short wavelengths observed with moiré interferometry. Phys. Rev. Lett., 88, 145003(2002).

    [17] J.Kroll, A.Hamza, K.Raman, D. S.Clark, A.Moore, S. V.Weber, D. E.Hoover, M. J.Edwards, L.Peterson, B. A.Remington, W. W.Hsing, D. T.Casey, O.Hurricane, O. L.Landen, H. F.Robey, V. A.Smalyuk, K.Widmann, J. D.Kilkenny, A.Nikroo, S. W.Haan. First measurements of hydrodynamic instability growth in indirectly driven implosions at ignition-relevant conditions on the National Ignition Facility. Phys. Rev. Lett., 112, 185003(2014).

    [18] Y.Zhou. Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing. I. Phys. Rep., 720-722, 1(2017).

    [19] P.Di Nicola, V. A.Smalyuk, J. M.Di Nicola, D.Kalantar, I.Igumenshchev, M.Koenig, C.Mailliet, T.Michel, P.Tzeferacos, Y.Sakawa, D.Martinez, B. A.Remington, E.Falize, N.Izumi, A.Casner, E.Le Bel, V.Tikhonchuk, S.Liberatore, T.Sano, J.Ballet, S. F.Khan, B.Albertazzi, L.Masse, D.Lamb, G.Rigon. From ICF to laboratory astrophysics: Ablative and classical Rayleigh–Taylor instability experiments in turbulent-like regimes. Nucl. Fusion, 59, 032002(2019).

    [20] N.Miyanaga, J.Jitsuno, K.Yoshida, M.Yamanaka, H.Takabe, S.Sakabe, T.Yamanaka, K.MIma, H.Azechi, Y.Izawa, T.Norimatsu, S.Ido, H.Nishimura, S.Nakai, M.Nakatsuka, T.Sasaki, T.Mochizuki, M.Takagi, C.Yamanaka, Y.Kato, K.Nishihara, T.Yabe. High thermonuclear neutron yield by shock multiplexing implosion with GEKKO XII green laser. Nucl. Fusion, 27, 19(1987).

    [21] T.Fujikawa, Y.Hironaka, H.Kato, K.Shigemori, K.Akimoto, T.Sakaiya, T.Kondo, T.Ueda, R.Hosogi, H.Terasaki. Measurements of Rayleigh–Taylor instability growth of laser-shocked iron–silicon alloy. High Pressure Res., 39, 150(2019).

    [22] Y.Izawa, T.Sasaki, T.Norimatsu, N.Miyanaga, H.Nishimura, H.Takabe, K.Mima, T.Yabe, Y.Kato, M.Nakai, T.Jitsuno, K.Yoshida, M.Yamanaka, S.Nakai, M.Takagi, K.Nishihara, T.Yamanaka, M.Nakatsuka, C.Yamanaka, H.Azechi. Scalings of implosion experiments for high neutron yield. Phys. Fluids, 31, 2884(1988).

    [23] R. E.Rudd, J. S.Wark, B. A.Remington. From microjoules to megajoules and kilobars to gigabars: Probing matter at extreme states of deformation. Phys. Plasmas, 22, 090501(2015).

    [24] K.Mima, K.Nishihara, H.Shiraga, M.Honda, H.Nishimura, K.Shigemori, M.Nakai, J. G.Wouchuk, R.Ishizaki, H.Takabe, H.Azechi, A.Nishiguchi, N.Miyanaga, T.Endo. Direct-drive hydrodynamic instability experiments on the GEKKO XII laser. Phys. Plasmas, 4, 4079(1997).

    [25] T.Sakaiya. Experimental investigation of ablative Rayleigh-Taylor instability(2005).

    [26] B. L.Henke, J. C.Davis, E. M.Gullikson. X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables, 54, 181(1993).

    [27] D. D.Meyerhofer, V. A.Smalyuk, J. P.Knauer, D. K.Bradley, T. R.Boehly. Characterization of an x-ray radiographic system used for laser-driven planar target experiments. Rev. Sci. Instrum., 70, 647(1999).

    [28] G.Rockefeller, J.Jayaraj, P.-H.Lin, K.Muthuraman, G.Dimonte, C.Fryer, P.Ramaprabhu, P.Woodward. The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys. Fluids, 24, 074107(2012).

    [29] R.Betti, V. N.Goncharov, C. P.Verdon, R. L.McCrory. Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion. Phys. Plasmas, 5, 1446(1998).

    [30] K.Mezger, C.Münker, H.Palme, T.Kleine. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf–W chronometry. Nature, 418, 952(2002).

    Hidenori Terasaki, Tatsuhiro Sakaiya, Keisuke Shigemori, Kosaku Akimoto, Hiroki Kato, Yoichiro Hironaka, Tadashi Kondo. In situ observation of the Rayleigh–Taylor instability of liquid Fe and Fe–Si alloys under extreme conditions: Implications for planetary core formation[J]. Matter and Radiation at Extremes, 2021, 6(5): 054403
    Download Citation