• Photonics Research
  • Vol. 3, Issue 2, A21 (2015)
Jingjuan Zhou1, Aiping Luo2, Zhichao Luo2, Xudong Wang1, Xinhuan Feng1、*, and Bai-ou Guan1
Author Affiliations
  • 1Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
  • 2Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
  • show less
    DOI: 10.1364/prj.3.000a21 Cite this Article Set citation alerts
    Jingjuan Zhou, Aiping Luo, Zhichao Luo, Xudong Wang, Xinhuan Feng, Bai-ou Guan. Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber[J]. Photonics Research, 2015, 3(2): A21 Copy Citation Text show less
    References

    [1] J. Sun, Y. T. Dai, X. F. Chen, Y. J. Zhang, and S. Z. Xie, “Stable dual-wavelength DFB fiber laser with separate resonant cavities and its application in tunable microwave generation,” IEEE Photon. Technol. Lett. 18, 2587–2589 (2006).

    [2] S. P. Mo, Z. M. Feng, S. H. Xu, W. N. Zhang, D. D. Chen, T. Yang, C. S. Yang, C. Li, and Z. M. Yang, “Photonic generation of tunable microwave signals from a dual-wavelength distributed-Braggreflector highly Er3+/Yb3+ co-doped phosphate fiber laser,” Laser Phys. Lett. 10, 125107–125110 (2013).

    [3] Y. Yao, X. F. Chen, Y. T. Dai, and S. Z. Xie, “Dual-wavelength erbium-doped fiber laser with a simple linear cavity and its application in microwave generation,” IEEE Photon. Technol. Lett. 18, 187–189 (2006).

    [4] S. L. Pan and J. P. Yao, “Frequency-switchable microwave generation based on a dual-wavelength single-longitudinal-mode fiber laser incorporating a high-fineness ring filter,” Opt. Express 17, 12167–12173 (2009).

    [5] S. L. Pan and J. P. Yao, “A wavelength-switchable singlelongitudinal- mode dual-wavelength erbium-doped fiber laser for switchable microwave generation,” Opt. Express 17, 5414–5419 (2009).

    [6] S. C. Feng, C. H. Qi, Q. Li, W. J. Peng, S. Gao, and S. S. Jian, “Photonic generation of microwave signal by beating a dualwavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber Bragg grating,” Microw. Opt. Technol. Lett. 55, 347–351 (2013).

    [7] L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, “High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 19, 1598–1600 (2007).

    [8] B. O. Guan, L. Jin, Y. Zhang, and H. Y. Tam, “Polarimetric heterodyning fiber grating laser sensors,” J. Lightwave Technol. 30, 1097–1112 (2012).

    [9] Q. L. Bao, H. Zhang, Z. H. Ni, Y. Wang, L. Polavarapu, Z. X. Shen, Q. H. Xu, D. Y. Tang, and K. P. Loh, “Monolayer graphene as a saturable absorber in a mode-locked laser,” Nano Res. 4, 297–307 (2011).

    [10] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).

    [11] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).

    [12] H. Zhang, Q. L. Bao, D. Y. Tang, L. M. Zhao, and K. P. Loh, “Large energy soliton erbium-doped fiber laser with a graphenepolymer composite mode locker,” Appl. Phys. Lett. 95, 141103 (2009).

    [13] Z. Q. Luo, M. Zhou, J. Weng, G. M. Huang, H. Y. Xu, C. C. Ye, and Z. P. Cai, “Graphene-based passively Q-switched dualwavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010).

    [14] A. P. Luo, P. F. Zhu, H. Liu, X. W. Zheng, N. Zhao, M. Liu, H. Cui, Z. C. Luo, and W. C. Xu, “Microfiber-based, highly nonlinear graphene saturable absorber for formation of versatile structural soliton molecules in a fiber laser,” Opt. Express 22, 27019–27025 (2014).

    [15] N. Zhao, M. Liu, H. Liu, X. W. Zheng, Q. Y. Ning, A. P. Luo, Z. C. Luo, and W. C. Xu, “Dual-wavelength rectangular pulse Yb-doped fiber laser using a microfiber based graphene saturable absorber,” Opt. Express 22, 10906–10903 (2014).

    [16] A. Martinez, K. Fuse, and S. Yamashita, “Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers,” Appl. Phys. Lett. 99, 121107 (2011).

    [17] F. D. Muhammad, M. Z. Zulkifli, A. A. Latif, S. W. Harun, and H. Ahmad, “Graphene-based saturable absorber for singlelongitudinal- mode operation of highly doped erbium-doped fiber laser,” IEEE Photon. J. 4, 467–475 (2012).

    [18] H. Liu, X. W. Zheng, M. Liu, N. Zhao, A. P. Luo, Z. C. Luo, W. C. Xu, H. Zhang, C. J. Zhao, and S. C. Wen, “Femtosecond pulse generation from a topological insulator mode-locked fiber laser,” Opt. Express 22, 6868–6873 (2014).

    CLP Journals

    [1] Bo Guo. 2D noncarbon materials-based nonlinear optical devices for ultrafast photonics [Invited][J]. Chinese Optics Letters, 2018, 16(2): 020004

    [2] Junkai Shi, Weihu Zhou. Self-starting simple structured dual-wavelength mode-locked erbium-doped fiber laser using a transmission-type semiconductor saturable absorber[J]. Chinese Optics Letters, 2018, 16(3): 031404

    [3] Baole Lu, Limei Yuan, Xinyuan Qi, Lei Hou, Bo Sun, Pan Fu, Jintao Bai. MoS2 saturable absorber for single frequency oscillation of highly Yb-doped fiber laser[J]. Chinese Optics Letters, 2016, 14(7): 071404

    [4] Hongdan Wan, Hongye Li, Haohan Zhu, Ji Xu, Yunqing Lu, Jin Wang. Tunable, ultra-narrow-band optical filter based on a whispering gallery mode hybrid-microsphere[J]. Chinese Optics Letters, 2016, 14(11): 112302

    Jingjuan Zhou, Aiping Luo, Zhichao Luo, Xudong Wang, Xinhuan Feng, Bai-ou Guan. Dual-wavelength single-longitudinal-mode fiber laser with switchable wavelength spacing based on a graphene saturable absorber[J]. Photonics Research, 2015, 3(2): A21
    Download Citation