• Chinese Journal of Lasers
  • Vol. 52, Issue 10, 1006004 (2025)
Bingtao Cai1, Wentao Huang2, Limin Xiao1,*, and Xiaobao Chen2,**
Author Affiliations
  • 1Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China
  • 2The 23rd Research Institute, China Electronics Technology Group Corporation, Shanghai 201900, China
  • show less
    DOI: 10.3788/CJL241389 Cite this Article Set citation alerts
    Bingtao Cai, Wentao Huang, Limin Xiao, Xiaobao Chen. Linear Frequency Modulation of Acousto‐Optic Modulator for Heterodyne Demodulation of Interferometric Fiber Optic Sensing Arrays[J]. Chinese Journal of Lasers, 2025, 52(10): 1006004 Copy Citation Text show less
    References

    [1] Wang Z Y, Liu Y F, Chen Y C et al. Research and application progress of distributed fiber optic hydrophone technology[J]. Acta Optica Sinica, 44, 0106004(2024).

    [2] Hu Q H, Zhu X Q, Ma L N et al. Advances in passive-interferometric type fiber Bragg grating-based hydrophones[J]. Laser & Optoelectronics Progress, 60, 1106015(2023).

    [3] Li H R, Li C R, Zhao D et al. Research progress on MZ-Sagnac interferometric distributed optical fiber vibration sensing technology[J]. Laser & Optoelectronics Progress, 61, 1300008(2024).

    [4] Zhang X P, Zhang Y X, Wang L et al. Current status and future of research and applications for distributed fiber optic sensing technology[J]. Acta Optica Sinica, 44, 0106001(2024).

    [5] Li Z Y, Wang C J, Gui X et al. A high-performance fiber-optic hydrophone for large scale arrays[J]. Journal of Lightwave Technology, 41, 4201-4210(2023).

    [6] Guo Y J, Wang L, Su M Y et al. A review of demodulation technology of fiber optic hydrophone[J]. Spectroscopy and Spectral Analysis, 42, 1017-1021(2022).

    [7] Zhang S, Wang M, Wang K et al. Signal demodulation of fiber optic hydrophone with asymmetric amplitude and phase of 3×3 coupler[J]. Chinese Journal of Scientific Instrument, 44, 32-41(2023).

    [8] Yuan Y G, Li J, Zhu Y et al. A high-stable self-referenced PGC demodulation algorithm for fiber-optic interferometric sensor[J]. Optical Fiber Technology, 76, 103249(2023).

    [9] Gong Y F, Shi J H, Guang D et al. Improved algorithm for phase generation carrier to eliminate the influence of modulation depth with multi-harmonics frequency mixing[J]. Journal of Lightwave Technology, 41, 1357-1363(2023).

    [10] Zhang G, Xu L G, Ge Q et al. High precision and stabilization PGC demodulation scheme for fiber optic interferometric sensors[J]. Journal of Lightwave Technology, 41, 6615-6620(2023).

    [11] Cai B T, Xiao L M, Chen X B. Improvement of dynamic range upper limit for phase generated carrier algorithm based on linear interpolation[J]. Laser & Optoelectronics Progress, 61, 1706011(2024).

    [12] Hou Q K, Yao Q, Chen H et al. A multi-phase phase-generated carrier demodulation algorithm for stability improvement of noise transfer coefficient for fiber optic hydrophone[J]. Acta Optica Sinica, 44, 0207001(2024).

    [13] Huang Y, Zhao Z L, Cai B T et al. Phase demodulation algorithm based on multi-harmonic mixing and nonlinear curve fitting[J]. Acta Optica Sinica, 44, 2106002(2024).

    [14] Ye B, Zhang Z L, Ge H L. Comparison of signal demodulation between fiber optic hydrophone PGC and heterodyne method[J]. Acoustics and Electronics Engineering, 10-14(2013).

    [15] Hu J F, Li D M, Gu M X. Research on technology of interferometric fiber-optic hydrophone system based on heterodyne detection scheme[J]. Optics & Optoelectronic Technology, 17, 10-17(2019).

    [16] He X G, Zhang M, Gu L J et al. Performance improvement of dual-pulse heterodyne distributed acoustic sensor for sound detection[J]. Sensors, 20, 999(2020).

    [17] Hua X B, Zhang R Z. Application of improved demodulation methods based on phase-generated carrier in laser heterodyne speech system[J]. Acta Optica Sinica, 42, 1607001(2022).

    [18] Zhang C X, Yang S F, Wang X X. Dual pulse heterodyne distributed acoustic sensor system employing SOA-based fiber ring laser[J]. Frontiers in Physics, 11, 1196067(2023).

    [19] Cai B T, Xiao L M, Chen X B. Low-noise stabilization of demodulation in fiber-optic hydrophones using heterodyne algorithm with non-polarization-maintaining optical path and serial acousto-optic modulation[J]. Acta Optica Sinica, 44, 1406003(2024).

    [20] Cai B T, Jing C P, Shu P et al. Cable vibration noise suppression technique for unbalanced fiber optic hydrophone towed array[J]. Optical Fiber & Electric Cable and Their Applications, 33-36(2019).

    [21] Ma T, Zhao L G, Gao H et al. An improved PGC demodulation algorithm for optical fiber interferometers with insensitive to carrier phase delay and modulation depth[J]. Optical Fiber Technology, 74, 103121(2022).

    [22] Li Y, Gao H, Zhao L G et al. Improved PGC demodulation algorithm to eliminate modulation depth and intensity disturbance[J]. Applied Optics, 61, 5722-5727(2022).

    [23] Song X C, Tang D L, Ding C. Phase demodulation algorithm based on quadrature signal synthesis calculation[J]. Acta Optica Sinica, 43, 2206005(2023).

    [24] Volkov A V, Plotnikov M Y, Mekhrengin M V et al. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors[J]. IEEE Sensors Journal, 17, 4143-4150(2017).

    [25] Nikitenko A N, Plotnikov M Y, Volkov A V et al. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors[J]. IEEE Sensors Journal, 18, 1985-1992(2018).

    [26] Shi J H, Guang D, Li S L et al. Phase-shifted demodulation technique with additional modulation based on a 3×3 coupler and EFA for the interrogation of fiber-optic interferometric sensors[J]. Optics Letters, 46, 2900-2903(2021).

    [27] Zhang G, Xu L G, Ge Q et al. Ameliorated PGC demodulation scheme using Taubin least squares fitting of ellipse in fiber optic interferometric sensors[J]. Optical Fiber Technology, 80, 103374(2023).

    [28] Delfyett P J, Mandridis D, Piracha M U et al. Chirped pulse laser sources and applications[J]. Progress in Quantum Electronics, 36, 475-540(2012).

    [29] Ma G L, Cheng Z, Tang C P et al. Real-time nonlinear correction technology of linear frequency modulation distributed feedback laser based on FPGA[J]. Laser & Optoelectronics Progress, 61, 2314003(2024).

    [30] Cui S J, Kang J H, Wu B. Distributed optical fiber micro-seismic signal modulation system based on linear frequency modulation[J]. Laser & Optoelectronics Progress, 60, 2306006(2023).

    [31] Ma Z, Zhang M J, Jiang J F et al. Fiber-optic distributed acoustic sensing technology based on linear frequency modulation pulses[J]. Laser & Optoelectronics Progress, 60, 1106002(2023).

    [32] Na Q X, Xie Q J, Zhang N et al. Optical frequency shifted FMCW Lidar system for unambiguous measurement of distance and velocity[J]. Optics and Lasers in Engineering, 164, 107523(2023).

    [33] Zhao M Y, Mao Y, Wang Z X et al. Interferometric fiber-optic hydrophone system based on linear frequency modulation[J]. Journal of Lightwave Technology, 40, 6769-6777(2022).

    Bingtao Cai, Wentao Huang, Limin Xiao, Xiaobao Chen. Linear Frequency Modulation of Acousto‐Optic Modulator for Heterodyne Demodulation of Interferometric Fiber Optic Sensing Arrays[J]. Chinese Journal of Lasers, 2025, 52(10): 1006004
    Download Citation