• Photonics Research
  • Vol. 10, Issue 11, 2532 (2022)
Wei Xu1、2、*, Shuning Zong1, Fengkai Shang1, Longjiang Zheng1, and Zhiguo Zhang2、3
Author Affiliations
  • 1School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
  • 2Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150001, China
  • 3Laboratory of Sono- and Photo-theranostic Technologies, Harbin Institute of Technology, Harbin 150001, China
  • show less
    DOI: 10.1364/PRJ.467836 Cite this Article Set citation alerts
    Wei Xu, Shuning Zong, Fengkai Shang, Longjiang Zheng, Zhiguo Zhang. Dual-excitation decoding multiparameter-based ratiometric luminescence thermometry: a new strategy toward reliable and accurate thermal sensing[J]. Photonics Research, 2022, 10(11): 2532 Copy Citation Text show less
    References

    [1] R. Sakaguchi, S. Kiyonaka, Y. Mori. Fluorescent sensors reveal subcellular thermal changes. Curr. Opin. Biotechnol., 31, 57-64(2015).

    [2] C. Abram, B. Fond, E. Beyrau. Temperature measurement techniques for gas and liquid flows using thermographic phosphor tracer particles. Prog. Energy Combust. Sci., 64, 93-156(2018).

    [3] X. D. Wang, O. S. Wolfbeis, R. J. Meier. Luminescent probes and sensors for temperature. Chem. Soc. Rev., 42, 7834-7869(2013).

    [4] R. Sitia, I. Braakman. Quality control in the endoplasmic reticulum protein factory. Nature, 426, 891-894(2003).

    [5] N. Soga, K. Kimura, K. Kinosita, M. Yoshida, T. Suzuk. Perfect chemomechanical coupling of F0F1-ATP synthase. Proc. Natl. Acad. Sci. USA, 114, 4960-4965(2017).

    [6] M. Quintanilla, L. M. Liz-Marzán. Guiding rules for selecting a nanothermometer. Nano Today, 19, 126-145(2018).

    [7] M. Fujiwara, S. Sun, A. Dohms, Y. Nishimura, K. Suto, Y. Takezawa, K. Oshimi, L. Zhao, N. Sadzak, Y. Umehara, Y. Teki, N. Komatsu, O. Benson, Y. Shikano, E. Kage-Nakadai. Real-time nanodiamond thermometry probing in vivo thermogenic responses. Sci. Adv., 6, eaba9636(2020).

    [8] M. Suzuki, T. Plakhotnik. The challenge of intracellular temperature. Biophys. Rev., 12, 593-600(2020).

    [9] E. J. McLaurin, L. R. Bradshaw, D. R. Gamelin. Dual-emitting nanoscale temperature sensors. Chem. Mater., 25, 1283-1292(2013).

    [10] M. D. Dramicanin. Trends in luminescence thermometry. J. Appl. Phys., 128, 040902(2020).

    [11] C. D. S. Brites, S. Balabhadra, L. D. Carlos. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry. Adv. Opt. Mater., 7, 1801239(2019).

    [12] D. Jaque, F. Vetrone. Luminescence nanothermometry. Nanoscale, 4, 4301-4326(2012).

    [13] B. Dong, B. S. Cao, Y. Y. He, Z. Liu, Z. P. Li, Z. Q. Feng. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater., 24, 1987-1993(2012).

    [14] L. Li, C. Zhang, L. Xu, C. Q. Ye, S. R. Chen, X. M. Wang, Y. L. Song. Luminescence ratiometric nanothermometry regulated by tailoring annihilators of triplet-triplet annihilation upconversion nanomicelles. Angew. Chem., 60, 26725-26733(2021).

    [15] J. Drabik, L. Marciniak. Excited state absorption for ratiometric thermal imaging. ACS Appl. Mater. Interfaces, 13, 1261-1269(2021).

    [16] L. Marciniak, K. Prorok, A. Bednarkiewicz, A. Kowalczyk, D. Hreniak, W. Strek. Water dispersible LiNdP4O12 nanocrystals: new multifunctional NIR–NIR luminescent materials for bio-applications. J. Lumin., 176, 144-148(2016).

    [17] A. Bednarkiewicz, J. Drabik, K. Trejgis, D. Jaque, E. Ximendes, L. Marciniak. Luminescence based temperature bio-imaging: status, challenges, and perspectives. Appl. Phys. Rev., 8, 011317(2021).

    [18] A. F. Pereira, J. F. Silva, A. S. Gouveia-Neto, C. Jacinto. 1.319 μm excited thulium doped nanoparticles for subtissue thermal sensing with deep penetration and high contrast imaging. Sens. Actuators B Chem., 238, 525-531(2017).

    [19] H. Suo, X. Q. Zhao, Z. Y. Zhang, Y. Wang, J. S. Sun, M. K. Jin, C. F. Guo. Rational design of ratiometric luminescence thermometry based on thermally coupled levels for bioapplications. Laser Photon. Rev., 15, 2000319(2020).

    [20] N. Rakov, Y. T. Xing, G. S. Maciel. Optical thermometry operation within all three biological windows using Nd3+:Er3+:Y2O3 nanocomposite phosphors. ACS Appl. Nano Mater., 3, 10479-10486(2020).

    [21] A. Nexha, J. J. Carvajal, M. C. Pujol, F. Diaz, M. Aguilo. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications. Nanoscale, 13, 7913-7987(2021).

    [22] M. C. Jia, Z. Sun, M. X. Zhang, H. Y. Xu, Z. L. Fu. What determines the performance of lanthanide-based ratiometric nanothermometers?. Nanoscale, 12, 20776-20785(2020).

    [23] F. Vetrone, R. Naccache, A. Zamarron, A. J. de la Fuente, F. Sanz-Rodriguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, J. A. Capobianco. Temperature sensing using fluorescent nanothermometers. ACS Nano, 4, 3254-3258(2010).

    [24] D. C. Yu, H. Y. Li, D. W. Zhang, Q. Y. Zhang, A. Meijerink, M. Suta. One ion to catch them all: targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light Sci. Appl., 10, 236(2021).

    [25] M. Xu, X. M. Zou, Q. Q. Su, W. Yuan, C. Cao, Q. H. Wang, X. J. Zhu, W. Feng, F. Y. Li. Ratiometric nano thermometer in vivo based on triplet sensitized upconversion. Nat. Commun., 9, 2698(2018).

    [26] S. S. Zhou, X. M. Li, S. B. Zhang. Design of opposite thermal behaviors in Tm3+/Eu3+ codoped YVO4 for high-sensitivity optical thermometry. Opt. Lett., 46, 1301-1304(2021).

    [27] L. J. Shi, W. X. Song, C. Lian, W. Chen, J. Mei, J. H. Su, H. L. Liu, H. Tian. Dual-emitting dihydrophenazines for highly sensitive and ratiometric thermometry over a wide temperature range. Adv. Opt. Mater., 6, 1800190(2018).

    [28] B. del Rosal, E. Ximendes, U. Rocha, D. Jaque. In vivo luminescence nanothermometry: from materials to applications. Adv. Opt. Mater., 5, 1600508(2017).

    [29] J. J. Zhou, B. del Rosal, D. Jaque, S. Uchiyama, D. Y. Jin. Advances and challenges for fluorescence nanothermometry. Nat. Methods, 17, 967-980(2020).

    [30] A. Bednarkiewicz, L. Marciniak, L. D. Carlos, D. Jaque. Standardizing luminescence nanothermometry for biomedical applications. Nanoscale, 12, 14405-14421(2020).

    [31] Y. L. Shen, J. Lifante, N. Fernánderz, D. Jaque, E. Ximends. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability. ACS Nano, 14, 4122-4133(2020).

    [32] L. Labrador-Páez, M. Pedroni, A. Speghini, J. García-Solé, P. Haro-González, D. Jaque. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale, 10, 22319-22328(2018).

    [33] X. C. Qiu, Q. W. Zhou, X. J. Zhu, Z. G. Wu, W. Feng, F. Y. Li. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat. Commun., 11, 4(2020).

    [34] S. W. Long, S. P. Lin, D. C. Ma, Y. Z. Zhu, H. S. Li, B. Wang. Thermometry strategy developed based on fluorescence contrast driven by varying excitations in codoped LiNbO3. Photon. Res., 8, 135-142(2020).

    [35] S. H. Yu, J. Xu, X. Y. Shang, W. Zheng, P. Huang, R. F. Li, D. T. Tu, X. Y. Chen. A dual-excitation decoding strategy based on NIR hybrid nanocomposites for high-accuracy thermal sensing. Adv. Sci., 7, 2001589(2020).

    [36] L. V. G. Tarelho, L. Gomes, I. M. Ranieri. Determination of microscopic parameters for nonresonant energy-transfer processes in rare-earth-doped crystals. Phys. Rev. B, 56, 14344-14351(1997).

    [37] J. Liu, H. W. Deng, Z. Y. Huang, Y. L. Zhang, D. H. Chen, Y. Z. Shao. Phonon-assisted energy back transfer-induced multicolor upconversion emission of Gd2O3:Yb3+/Er3+ nanoparticles under near-infrared excitation. Phys. Chem. Chem. Phys., 17, 15412-15418(2015).

    [38] T. Miyakava, D. L. Dexter. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B, 1, 2961-2969(1970).

    [39] J. J. Zhou, S. H. Wen, J. Y. Liao, C. Clarke, S. A. Tawfik, W. Ren, C. Mi, F. Wang, D. Y. Jin. Activation of the surface dark-layer to enhance upconversion in a thermal field. Nat. Photonics, 12, 154-158(2018).

    [40] F. Rivera-López, P. Babu, C. Basavapoornima, C. K. Jayasankar, V. Lavín. Efficient Nd3+→Yb3+ energy transfer processes in high phonon energy phosphate glasses for 1.0 μm Yb3+ laser. J. Appl. Phys., 109, 123514(2011).

    [41] W. Xu, H. Zhao, Z. G. Zhang, W. W. Cao. Highly sensitive optical thermometry through thermally enhanced near infrared emissions from N3+/Yb3+ codoped oxyfluoride glass ceramic. Sens. Actuators B Chem., 178, 520-524(2013).

    [42] W. Xu, Q. T. Song, L. J. Zheng, Z. G. Zhang, W. W. Cao. Optical temperature sensing based on the near-infrared emissions from Nd3+/Yb3+ codoped CaWO4. Opt. Lett., 39, 4635-4638(2014).

    [43] F. K. Shang, C. H. Hu, W. Xu, X. Zhu, D. Zhao, W. B. Zhang, Z. G. Zhang, W. W. Cao. Near-infrared emitting Nd3+-Yb3+ codoped Y2O3 nanocrystals for highly sensitive optical thermometry. J. Alloys Compd., 858, 157637(2021).

    [44] U. Caldino, D. Jaque, E. Martin-Rodriguez, M. O. Ramirez, J. G. Sole, A. Speghini, M. Bettinelli. Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal. Phys. Rev. B, 77, 075121(2008).

    [45] V. Naresh, N. Lee. NIR luminescence and energy transfer kinetics in Nd3+/Yb3+ codoped sodium aluminium bismuth fluoro-borosilicate glasses. Ceram. Int., 45, 22649-22659(2019).

    [46] Y. X. Luo, L. Y. Li, H. T. Wong, K. L. Wong, P. A. Tanner. Importance of volume ratio in photonics effects of lanthanide-doped LaPO4 nanocrystals. Small, 16, 1905234(2020).

    [47] Y. X. Zhou, J. Wang, S. X. Dai, T. F. Xu, Q. H. Nie, S. L. Huang. Improvement of Er3+: 4I11/2-Ce3+:2F5/2 energy transfer rate in Er3+/Ce3+ codoped TeO2-ZnO-Na2O-Nb2O5 glasses. J. Lumin., 129, 1-5(2009).

    [48] W. L. Zhou, J. Yang, J. Wang, Y. Li, X. J. Kuang, J. K. Tang, H. B. Liang. Study on the effects of 5D energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5:Ce3+, Yb3+. Opt. Express, 20, A510-A518(2012).

    [49] A. O. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, F. Díaz. Benefits of silica, core–shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion nanoparticles. ACS Appl. Mater. Interfaces, 8, 7266-7273(2016).

    [50] M. Lin, L. J. Xie, Z. J. Wang, B. S. Richards, G. J. Gao, J. P. Zhong. Facile synthesis of mono-disperse sub-20 nm NaY(WO4)2: Er3+, Yb3+ upconversion nanoparticles: a new choice for nanothermometry. J. Mater. Chem. C, 7, 2971-2977(2019).

    [51] E. Casagrande, M. Back, D. Cristofori, J. Ueda, S. Tanabe, S. Palazzolo, F. Rizzolio, V. Canzonieri, E. Trave, P. Riello. Upconversion-mediated Boltzmann thermometry in double-layered Bi2SiO5:Yb3+,Tm3+@SiO2 hollow nanoparticles. J. Mater. Chem. C, 8, 7828-7836(2020).

    [52] I. E. Kolesnikov, E. V. Golyeva, M. A. Kurochkin, E. Lähderanta, M. D. Mikhailov. Nd3+-doped YVO4 nanoparticles for luminescence nanothermometry in the first and second biological windows. Sens. Actuators B Chem., 235, 287-293(2016).

    [53] A. Benayas, B. del Rosal, A. Perez-Delgado, K. Santacruz-Gomez, D. Jaque, G. A. Hirata, F. Vetrone. Nd: YAG near-infrared luminescent nanothermometers. Adv. Opt. Mater., 3, 687-694(2015).

    [54] H. Y. Xu, M. C. Jia, Z. Y. Wang, Y. L. Wei, Z. L. Fu. Enhancing the upconversion luminescence and sensitivity of nanothermometry through advanced design of dumbbell-shaped structured nanoparticles. ACS Appl. Mater. Interfaces, 13, 61506-61517(2021).

    [55] M. Kamimura, T. Matsumoto, S. Suyari, M. Umezawa, K. Soga. Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR II/III) biological window based on rare-earth doped beta-NaYF4 nanoparticles. J. Mater. Chem. B, 5, 1917-1925(2017).

    [56] C. Gu, Y. Y. Ding, X. H. Quan, M. Y. Gong, J. L. Yu, D. Zhao, C. X. Li. Near-infrared luminescent Nd3+/Yb3+-codoped metal-organic framework for ratiometric temperature sensing in physiological range. J. Rare Earths, 39, 1024-1030(2021).

    [57] Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, Y. S. Wang. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater., 26, 3139-3145(2016).

    [58] Z. P. Wang, D. Ananias, A. Carné-Sánchez, C. D. S. Brites, I. Imaz, D. Maspoch, J. Rocha, L. D. Carlos. Lanthanide–organic framework nanothermometers prepared by spray-drying. Adv. Funct. Mater., 25, 2824-2830(2015).

    [59] E. C. Ximendes, U. Rocha, T. O. Sales, N. Fernández, F. Sanz-Rodríguez, I. R. Martín, C. Jacinto, D. Jaque. In vivo subcutaneous thermal video recording by supersensitive infrared nanothermometers. Adv. Funct. Mater., 27, 1702249(2017).

    Wei Xu, Shuning Zong, Fengkai Shang, Longjiang Zheng, Zhiguo Zhang. Dual-excitation decoding multiparameter-based ratiometric luminescence thermometry: a new strategy toward reliable and accurate thermal sensing[J]. Photonics Research, 2022, 10(11): 2532
    Download Citation