[1] CH F LU, H ZHANG, M Y CHEN. Realization of high-quality development of transportation in the new era. China Journal of Highway and Transport, 34, 1-9(2021).
卢春房, 张航, 陈明玉. 新时代背景下的交通运输高质量发展. 中国公路学报, 34, 1-9(2021).
[2] 田会娟, 刘嘉伟, 翟佳豪. 基于多入侵线的视频车速检测方法. 交通运输系统工程与信息, 22, 49-56, 84(2022).
H J TIAN, J W LIU, J H ZHAI et al. Video-based vehicle speed measurement method using multiple intrusion lines. Journal of Transportation Systems Engineering and Information Technology, 22, 49-56, 84(2022).
[3] S HUA, M KAPOOR, D C ANASTASIU. Vehicle tracking and speed estimation from traffic videos, 18, 153-160(2018).
[4] T HUANG. Traffic speed estimation from surveillance video data, 2018, 161-165.
[5] J X ZHANG, W XIAO, B COIFMAN et al. Vehicle tracking and speed estimation from roadside lidar. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 5597-5608(2020).
[6] M FAMOURI, Z AZIMIFAR, A WONG. A novel motion plane-based approach to vehicle speed estimation. IEEE Transactions on Intelligent Transportation Systems, 20, 1237-1246(2019).
[7] M H ASHRAF, F JABEEN, H ALGHAMDI et al. HVD-net: a hybrid vehicle detection network for vision-based vehicle tracking and speed estimation. Journal of King Saud University-Computer and Information Sciences, 35, 101657(2023).
[8] D FERNÁNDEZ LLORCA, A HERNÁNDEZ MARTÍNEZ, I GARCÍA DAZA. Vision-based vehicle speed estimation: a survey. IET Intelligent Transport Systems, 15, 987-1005(2021).
[9] S J WANG, R D PI, J LI et al. Object tracking based on the fusion of roadside LiDAR and camera data. IEEE Transactions on Instrumentation Measurement, 71, 3201938(2022).
[10] H Y ZHANG, P Y HE, X W PENG. Multi-object pedestrian tracking method based on improved high resolution neural network. Opt. Precision Eng., 31, 860-871(2023).
张红颖, 贺鹏艺, 彭晓雯. 基于改进高分辨率神经网络的多目标行人跟踪. 光学 精密工程, 31, 860-871(2023).
[11] J X ZHANG, W XIAO, J P MILLS. Optimizing moving object trajectories from roadside lidar data by joint detection and tracking. Remote Sensing, 14, 2124(2022).
[12] B LV, H XU, J Q WU et al. LiDAR-enhanced connected infrastructures sensing and broadcasting high-resolution traffic information serving smart cities. IEEE Access, 7, 79895-79907(2019).
[13] A PAIGWAR, D SIERRA-GONZALEZ, Ö ERKENT et al. Frustum-PointPillars: a multi-stage approach for 3D object detection using RGB camera and LiDAR, 11, 2926-2933(2021).
[14] B Q GUO, G F XIE. Object detection algorithm based on image and point cloud fusion with N3D_DIOU. Opt. Precision Eng., 29, 2703-2713(2021).
郭保青, 谢光非. 基于N3D_DIOU的图像与点云融合目标检测算法. 光学 精密工程, 29, 2703-2713(2021).
[15] H L ZHANG, D F YANG, E YURTSEVER et al. Faraway-frustum: dealing with lidar sparsity for 3D object detection using fusion, 19, 2646-2652(2021).
[16] Y D WANG, J Y XU, L Q ZHU et al. Line feature coplanar constraint calibration method for lidar point cloud of tunnel contour. Opt. Precision Eng., 32, 774-784(2024).
王耀东, 徐金杨, 朱力强. 隧道轮廓激光雷达点云线特征共面约束标定方法. 光学 精密工程, 32, 774-784(2024).
[17] P Y JIANG, D J ERGU, F Y LIU et al. A review of yolo algorithm developments. Procedia Computer Science, 199, 1066-1073(2022).
[18] B VEERAMANI, J W RAYMOND, P CHANDA. DeepSort: deep convolutional networks for sorting haploid maize seeds. BMC Bioinformatics, 19, 289(2018).
[19] G H YAN, Z C LIU, C J WANG et al. OpenCalib: a multi-sensor calibration toolbox for autonomous driving. Software Impacts, 14, 100393(2022).