• Optics and Precision Engineering
  • Vol. 30, Issue 16, 2021 (2022)
Liming LIANG1, Longsong ZHOU1, Jun FENG1, Xiaoqi SHENG2, and Jian WU1,*
Author Affiliations
  • 1School of Electrical Engineering and Automation,Jiangxi University of Science and Technology, Ganzhou34000,China
  • 2School of Computer Science and Engineering,South China University of Technology, Guangzhou510006,China
  • show less
    DOI: 10.37188/OPE.20223016.2021 Cite this Article
    Liming LIANG, Longsong ZHOU, Jun FENG, Xiaoqi SHENG, Jian WU. Skin lesion segmentation based on high-resolution composite network[J]. Optics and Precision Engineering, 2022, 30(16): 2021 Copy Citation Text show less
    References

    [1] Z H WEI, F SHI, H SONG et al. Attentive boundary aware network for multi-scale skin lesion segmentation with adversarial training. Multimedia Tools and Applications, 79, 27115-27136(2020).

    [2] 2任凤雷, 何昕, 魏仲慧, 等. 基于DeepLabV3+与超像素优化的语义分割[J]. 光学 精密工程, 2019, 27(12): 2722-2729. doi: 10.3788/ope.20192712.2722RENF L, HEX, WEIZ H, et al. Semantic segmentation based on DeepLabV3+ and superpixel optimization[J]. Opt. Precision Eng., 2019, 27(12): 2722-2729.(in Chinese). doi: 10.3788/ope.20192712.2722

    [3] 3秦传波, 宋子玉, 曾军英, 等. 联合多尺度和注意力-残差的深度监督乳腺癌分割[J]. 光学 精密工程, 2021, 29(4): 877-895. doi: 10.37188/OPE.20212904.0877QINC B, SONGZ Y, ZENGJ Y, et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Opt. Precision Eng., 2021, 29(4): 877-895.(in Chinese). doi: 10.37188/OPE.20212904.0877

    [4] C ZHAO, R J SHUAI, L MA et al. Segmentation of skin lesions image based on U-Net + +. Multimedia Tools and Applications, 81, 8691-8717(2022).

    [5] S GARG, B JINDAL. Skin lesion segmentation using k-mean and optimized fire fly algorithm. Multimedia Tools and Applications, 80, 7397-7410(2021).

    [6] 6邹永宁, 张智斌, 李琦, 等. 基于Hessian矩阵和支持向量机的CT图像裂纹分割[J]. 光学 精密工程, 2021, 29(10): 2517-2527. doi: 10.37188/OPE.2021.0349ZOUY N, ZHANGZ B, LIQ, et al. Crack detection and segmentation in CT images using Hessian matrix and support vector machine[J]. Opt. Precision Eng., 2021, 29(10): 2517-2527.(in Chinese). doi: 10.37188/OPE.2021.0349

    [7] O RONNEBERGER, P FISCHER, T BROX. U-net: convolutional networks for biomedical image segmentation, 234-241(2015).

    [8] K SUN, Y ZHAO, B R JIANG et al. High-resolution representations for labeling pixels and regions. 2019: arXiv(1904). https://arxiv.org/abs/1904.04514

    [9] A RADMAN, A SALLAM, S A SUANDI. Deep residual network for face sketch synthesis. Expert Systems With Applications, 190, 115980(2022).

    [10] S BAGHERSALIMI, B BOZORGTABAR, P SCHMID-SAUGEON et al. DermoNet: densely linked convolutional neural network for efficient skin lesion segmentation. EURASIP Journal on Image and Video Processing, 1-10(2019).

    [11] Z H WEI, H SONG, L CHEN et al. Attention-based DenseUnet network with adversarial training for skin lesion segmentation. IEEE Access, 7, 136616-136629(2019).

    [12] M M K SARKER, H A RASHWAN, F AKRAM et al. SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks, 21-29(2018).

    [13] 13孟颖, 田启川, 吴施瑶. 基于U型网络复合特征的视网膜血管分割方法[J]. 计算机应用与软件, 2021, 38(8): 227-232, 267. doi: 10.3969/j.issn.1000-386x.2021.08.035MENGY, TIANQ C, WUS Y. Retinal vessel segmentation method of composite feature based on u-net[J]. Computer Applications and Software, 2021, 38(8): 227-232, 267.(in Chinese). doi: 10.3969/j.issn.1000-386x.2021.08.035

    [14] B YANG, G BENDER, Q V LE et al. CondConv: conditionally parameterized convolutions for efficient inference. 2019: arXiv(1904). https://arxiv.org/abs/1904.04971

    [15] S SINGH, S KRISHNAN. Filter response normalization layer: eliminating batch dependence in the training of deep neural networks, 11234-11243(2020).

    [16] G HUANG, Z LIU, L VAN DER MAATEN et al. Densely connected convolutional networks, 4700-4708(2017).

    [17] Q B HOU, L ZHANG, M M CHENG et al. Strip pooling: rethinking spatial pooling for scene parsing, 4002-4011(2020).

    [18] H S ZHAO, J P SHI, X J QI et al. Pyramid scene parsing network, 6230-6239(2017).

    [19] 19汪水源, 侯志强, 王囡, 等. 基于自适应模板更新与多特征融合的视频目标分割算法[J]. 光电工程, 2021, 48(10): 210193.WANGS Y, HOUZ Q, WANGN, et al. Video object segmentation algorithm based on adaptive template updating and multi-feature fusion[J]. Opto-Electronic Engineering, 2021, 48(10): 210193.(in Chinese)

    [20] S S M SALEHI, D ERDOGMUS, A GHOLIPOUR. Tversky loss function for image segmentation using 3D fully convolutional deep networks, 379-387(2017).

    [21] D GUTMAN, N C F CODELLA, E CELEBI et al. Skin lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC). arXiv preprint arXive:1605, 01397(2016).

    [22] N C F CODELLA, D GUTMAN, E CELEBI et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), 168-172(2018).

    [23] P TSCHANDL, C ROSENDAHL, H KITTLER. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 5, 180161(2018).

    [24] T MENDONÇA, P M FERREIRA, J S MARQUES et al. PH2 - A dermoscopic image database for research and benchmarking, 5437-5440(2013).

    [25] S QAMAR, P AHMAD, L L SHEN. Dense encoder-decoder-based architecture for skin lesion segmentation. Cognitive Computation, 13, 583-594(2021).

    [26] R GU, G T WANG, T SONG et al. CA-net: comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Transactions on Medical Imaging, 40, 699-711(2021).

    [27] 27杨国亮, 洪志阳, 王志元, 等. 基于改进全卷积网络的皮肤病变图像分割[J]. 计算机工程与设计, 2018, 39(11): 3500-3505.YANGG L, HONGZ Y, WANGZ Y, et al. Image segmentation of skin lesions based on improved fully convolution network[J]. Computer Engineering and Design, 2018, 39(11): 3500-3505.(in Chinese)

    [28] Y Y DONG, L J WANG, S L CHENG et al. FAC-net: feedback attention network based on context encoder network for skin lesion segmentation. Sensors (Basel, Switzerland), 21, 5172(2021).

    [29] Z MIRIKHARAJI, S IZADI, J KAWAHARA et al. Deep auto-context fully convolutional neural network for skin lesion segmentation, 877-880(2018).

    [30] X Z TONG, J Y WEI, B SUN et al. ASCU-net: attention gate, spatial and channel attention U-net for skin lesion segmentation. Diagnostics (Basel, Switzerland), 11, 501(2021).

    [31] E NASR-ESFAHANI, S RAFIEI, M H JAFARI et al. Dense pooling layers in fully convolutional network for skin lesion segmentation. Computerized Medical Imaging and Graphics, 78, 101658(2019).

    [32] F Y XIE, J W YANG, J LIU et al. Skin lesion segmentation using high-resolution convolutional neural network. Computer Methods and Programs in Biomedicine, 186, 105241(2020).

    [33] Y J TANG, F YANG, S F YUAN et al. A multi-stage framework with context information fusion structure for skin lesion segmentation, 1407-1410(2019).

    [34] S VESAL, N RAVIKUMAR, A MAIER. SkinNet: a deep learning framework for skin lesion segmentation, 1-3(2018).

    [35] H M ÜNVER, E AYAN. Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm. Diagnostics (Basel, Switzerland), 9, 72(2019).

    [36] B Y LEI, Z M XIA, F JIANG et al. Skin lesion segmentation via generative adversarial networks with dual discriminators. Medical Image Analysis, 64, 101716(2020).

    [37] Q G JIN, H CUI, C M SUN et al. Cascade knowledge diffusion network for skin lesion diagnosis and segmentation. Applied Soft Computing, 99, 106881(2021).

    [38] R RAMADAN. CU-net: a new improved multi-input color U-net model for skin lesion semantic segmentation. IEEE Access, 10, 15539-15564(2022).

    [39] H S WU, J Q PAN, Z Y LI et al. Automated skin lesion segmentation via an adaptive dual attention module. IEEE Transactions on Medical Imaging, 40, 357-370(2021).

    [40] K HU, J LU, D J LEE et al. AS-net: attention synergy network for skin lesion segmentation. Expert Systems With Applications, 201, 117112(2022).

    Liming LIANG, Longsong ZHOU, Jun FENG, Xiaoqi SHENG, Jian WU. Skin lesion segmentation based on high-resolution composite network[J]. Optics and Precision Engineering, 2022, 30(16): 2021
    Download Citation