[1] Rothberg SJ, et al. An international review of laser Doppler vibrometry: Making light work of vibration measurement. Opt Lasers Eng. 2017;99:11–22. .
[2] Yang J, Yang T, Wang Z, Jia D, Ge C. A novel method of measuring instantaneous frequency of an ultrafast frequency modulated continuous-wave laser. Sensors. 2020;20(14):3834. .
[3] Rogers C, et al. A universal 3D imaging sensor on a silicon photonics platform. Nature. 2021;590(7845):256–61. .
[4] Park Y, Cho K. Heterodyne interferometer scheme using a double pass in an acousto-optic modulator. Opt Lett. 2011;36(3):331. .
[5] Mychkovsky AG, Chang NA, Ceccio SL. Bragg cell laser intensity modulation: effect on laser Doppler velocimetry measurements. Appl Opt. 2009;48(18):3468. .
[6] Toda H, Haruna M, Nishihara H. Integrated-optic heterodyne interferometer for displacement measurement. J Lightwave Technol. 1991;9(5):683–7. .
[7] Li Y, Meersman S, Baets R. Optical frequency shifter on SOI using thermo-optic serrodyne modulation. In 7th IEEE International Conference on Group IV Photonics. Beijing: IEEE; 2010. p. 75–77. .
[8] Li Y, et al. Heterodyne laser Doppler vibrometers integrated on silicon-on-insulator based on serrodyne thermo-optic frequency shifters. Appl Opt. 2013;52(10):2145. .
[9] Cole DB, Sorace-Agaskar C, Moresco M, Leake G, Coolbaugh D, Watts MR. Integrated heterodyne interferometer with on-chip modulators and detectors. Opt Lett. 2015;40(13):3097. .
[10] Li Y, Dieussaert E, Baets R. Miniaturization of laser doppler vibrometers—a review. Sensors. 2022;22(13):4735. .
[11] Izutsu M, Shikama S, Sueta T. Integrated optical SSB modulator/frequency shifter. IEEE J Quantum Electron. 1981;17(11):2225–7. .
[12] Shimotsu S, et al. Single side-band modulation performance of a LiNbO 3 integrated modulator consisting of four-phase modulator waveguides. IEEE Photonics Technol Lett. 2001;13(4):364–6. .
[13] Yamazaki H, Saida T, Goh T, Mori A, Mino S. Dual-carrier IQ modulator with a complementary frequency shifter. Opt Express. 2011;19(26):B69. .
[14] Kodigala A, et al. Silicon Photonic Single-Sideband Generation with Dual-Parallel Mach-Zehnder Modulators. In Conference on Lasers and Electro-Optics. San Jose, California; 2019. .
[15] Hasan GM, Hasan M, Hall TJ. Performance analysis of a multi-function mach-zehnder interferometer based photonic architecture on SOI acting as a frequency shifter. Photonics. 2021;8(12):561. .
[16] Alexander K, et al. Nanophotonic Pockels modulators on a silicon nitride platform. Nat Commun. 2018;9(1):3444. .
[17] Lauermann M, et al. Integrated optical frequency shifter in silicon-organic hybrid (SOH) technology. Opt Express. 2016;24(11):11694. .
[18] Reed GT, et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics. 2014;3(4–5):229–45. .
[19] Spuesens T, et al. Integrated Optical Frequency Shifter on a Silicon Platform. In Conference on Lasers and Electro-Optics. San Jose, California; 2016. .
[20] Yamaguchi Y, Kanno A, Kawanishi T, Izutsu M, Nakajima H. Pure Single-Sideband Modulation Using High Extinction-Ratio Parallel Mach-Zehnder Modulator with Third-Order Harmonics Superposition Technique. In CLEO: 2015. San Jose, California: 2015. p. JTh2A.40. .
[21] Rubiyanto A, Herrmann H, Ricken R, Tian F, Sohler W. Integrated optical heterodyne interferometer in lithium niobate. J Nonlinear Optic Phys Mat. 2001;10(02):163–8. .
[22] Edinger P, et al. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt Lett. 2021;46(22):5671. .
[23] Jin W, Polcawich RG, Morton PA, Bowers JE. Piezoelectrically tuned silicon nitride ring resonator. 2018:14.
[24] Huang M. Stress effects on the performance of optical waveguides. Int J Solids Struct. 2003;40(7):1615–32. .
[25] Donati S, Barbieri L, Martini G. Piezoelectric actuation of silica-on-silicon waveguide devices. IEEE Photon Technol Lett. 1998;10(10):1428–30. .
[26] Tsia KK, Fathpour S, Jalali B. Electrical tuning of birefringence in silicon waveguides. Appl Phys Lett. 2008;92(6):061109. .
[27] Sebbag Y, et al. Bistability in silicon microring resonator based on strain induced by a piezoelectric lead zirconate titanate thin film. Appl Phys Lett. 2012;100(14):141107. .
[28] Schriever C, Bohley C, Schilling J, Wehrspohn RB. Strained silicon photonics. Materials. 2012;5(12):889–908. .
[29] Hosseini N, et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Opt Express. 2015;23(11):14018. .
[30] Epping JP, et al. Ultra-low-power stress-optics modulator for microwave photonics. Presented at the SPIE OPTO. San Francisco, California: 2017. 101060F. .
[31] Epping JP, et al. Ultra-low-power stress-based integrated photonic phase actuator. 2018:3.
[32] Everhardt A, et al. Ultra-low power stress-based phase actuation in TriPleX photonic circuits. In Integrated Optics: Devices, Materials, and Technologies XXVI. San Francisco: 2022. p. 11. .
[33] Casset F, et al. Stress optic modulator using thin-film PZT for LIDAR applications. In 2019 IEEE SENSORS, Montreal: IEEE; 2019. p 1–4. .
[34] Wang J, Liu K, Harrington MW, Rudy RQ, Blumenthal DJ. Silicon nitride stress-optic microresonator modulator for optical control applications. Opt Express. 2022;30(18):31816. .
[35] van der Slot PJM, Porcel MAG, Boller K-J. Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides. Opt Express. 2019;27(2):1433. .
[36] Ansari I, et al. Light modulation in Silicon photonics by PZT actuated acoustic waves. ArXiv211207988 Phys. 2021. Accessed 30 Jan 2022. Available: http://arxiv.org/abs/2112.07988
[37] Tsokos C, et al. True time delay optical beamforming network based on hybrid inp-silicon nitride integration. J Lightwave Technol. 2021;39(18):5845–54. .
[38] Nguyen MD, Tiggelaar R, Aukes T, Rijnders G, Roelof G. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators. J Phys Conf Ser. 2017;922:012022. .
[39] Nguyen MD, Houwman EP, Dekkers M, Rijnders G. Strongly enhanced piezoelectric response in lead zirconate titanate films with vertically aligned columnar grains. ACS Appl Mater Interfaces. 2017;9(11):9849–61. .
[40] de Felipe D, et al. Recent developments in polymer-based photonic components for disruptive capacity upgrade in data centers. J Light Technol. 2017;35(4):683–9. .
[41] Zhang Z, et al. Hybrid photonic integration on a polymer platform. MDPI Photonics. 2015;2(3):1005–26.
[42] Katopodis V, et al. Multi-flow transmitter based on polarization and optical carrier management on optical polymers. IEEE Photonics Technol Lett. 2016;28(11):1169–72.
[43] Katopodis V, et al. Polymer enabled 100 Gbaud connectivity for datacom applications. Elsevier Optics Commun. 2016;362:13–21.
[44] Johansmann M, Siegmund G, Pineda M. Targeting the Limits of Laser Doppler Vibrometry. 2005.
[45] Siegmund G. Sources of measurement error in laser Doppler vibrometers and proposal for unified specifications. Presented at the Eighth International Conference on Vibration Measurements by Laser Techniques. Ancona: Advances and Applications; 2008. 70980Y. .
[46] Li Y, Meersman S, Baets R. Realization of fiber-based laser Doppler vibrometer with serrodyne frequency shifting. Appl Opt. 2011;50(17):2809. .
[47] Johnson LM, Cox CH. Serrodyne optical frequency translation with high sideband suppression. J Light Technol. 1988;6(1):109–12. .
[48] Roeloffzen CGH, et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J Sel Top Quantum Electron. 2018;24(4):1–21. .
[49] Solmates B.V., website: http://www.solmates-pld.com
[50] Blank DHA, Dekkers M, Rijnders G. Pulsed laser deposition in Twente: from research tool towards industrial deposition. J Phys Appl Phys. 2014;47(3);034006. .
[51] Kleinert M, et al. Photonic integrated devices and functions on hybrid polymer platform. Presented at the SPIE OPTO. San Francisco, California; 2017. p. 100981A. .
[52] Maese-Novo A, et al. Thermally optimized variable optical attenuators on a polymer platform. Appl Opt. 2015;54(3):569. .
[53] Polytec GmbH., website: https://www.polytec.com/
[54] Dekkers M, et al. The significance of the piezoelectric coefficient d31,eff determined from cantilever structures. J Micromechanics Microengineering. 2013;23(2):025008. .
[55] Shekhar S, et al. Silicon Photonics - Roadmapping the Next Generation. 2023.
[56] Raptakis A, et al. Fully integrated Laser Doppler Vibrometer (LDV) based on hybrid 3D integration of silicon nitride and polymer photonic circuits with operation in the kHz regime. In Garcia-Blanco SM, Cheben P, editors. Integrated Optics: Devices, Materials, and Technologies XXVII. San Francisco: SPIE; 2023. p. 15. .
[57] Boller K-J, et al. Hybrid Integrated Semiconductor Lasers with Silicon Nitride Feedback Circuits. Photonics. 2019;7(1):4. .