[1] LI L, JIANG T, CHEN B J, et al. Overall utilization of Ti-extraction blast furnace slag as a raw building material: Removal of chlorine from slag by water washing and sintering[J]. J Sustain Metall, 2021, 7(3):1116–1127.
[3] FAN G Q, WANG M, DANG J, et al. A novel recycling approach for efficient extraction of titanium from high-titanium-bearing blast furnace slag[J]. Waste Manag, 2021, 120: 626–634.
[4] CHEN T, PENG T J, SUN H J, et al. Effect of SiO2/Al2O3 ratio on sintering behavior, crystallization behavior and properties of diopside-anorthite glass?ceramics[J]. J Asian Ceram Soc, 2023, 11(3):316–329.
[6] LIU Z B, ZONG Y B, MA H Y, et al. Effect of (CaO+MgO)/SiO2 ratio on crystallisation and properties of slag glass–ceramics[J]. Adv Appl Ceram, 2014, 113(7): 411–418.
[9] LIU S Q, LI N, SHEN H H. Influence of Kaolin on the sintering of glass powder to glass–ceramics[J]. J Inorg Organomet Polym Mater,2015, 25(6): 1547–1553.
[10] MUKHERJEE D P, DAS S K. SiO2-Al2O3-CaO glass?ceramics:Effects of CaF2 on crystallization, microstructure and properties[J].Ceram Int, 2013, 39(1): 571–578.
[11] LIN Z H, HE J Q, LI M H, et al. Crystallization mechanism and properties of CaO-B2O3-SiO2-Nb2O5 (CBSN) glass?ceramics[J]. J Non Cryst Solids, 2023, 614: 122379.
[12] SUN T F, ZHENG C, ZHANG F, et al. Mixed CaO/MgO effect on microstructure, mechanical properties and crystallization behaviour of Li2O-Al2O3-SiO2-ZrO2-P2O5 glass[J]. J Non Cryst Solids, 2023, 616:122457.
[13] XIONG K W, HUANG J G, XU Z H, et al. Metal-oxide doping enhances electromagnetic wave absorption performance of BaFe12O19 glass?ceramics[J]. Ceram Int, 2023, 49(19): 31276–31286.
[14] JIA R D, DENG L B, YUN F, et al. Effects of SiO2/CaO ratio on viscosity, structure, and mechanical properties of blast furnace slag glass ceramics[J]. Mater Chem Phys, 2019, 233: 155–162.
[15] HANSEN E, PERRET D, BARDEZ-GIBOIRE I, et al. Iron enriched peraluminous glasses: Incorporation limit and effect of iron on glass transition temperature and viscosity[J]. J Non Cryst Solids, 2022, 584:121523.
[17] LUO Y L, WANG F, LIAO Q L, et al. Effect of TiO2 on crystallization kinetics, microstructure and properties of building glass?ceramics based on granite tailings[J]. J Non Cryst Solids, 2021, 572: 121092.
[18] BA?ARAN C, TOPLAN N, TOPLAN H ?. The crystallization kinetics of the Bi2O3-added MgO–Al2O3–SiO2–TiO2 glass ceramics system produced from industrial waste[J]. J Therm Anal Calorim, 2018,134(1): 313–321.
[19] LI Q, XIE J L, HU J, et al. Influence of Ca/Al ratio on physical and dielectric properties of Al2O3/CaO-B2O3-SiO2 glass?ceramics composite coatings prepared by high enthalpy atmospheric plasma spraying[J]. J Eur Ceram Soc, 2022, 42(4): 1501–1509.
[20] HOU Y, ZHANG G H, CHOU K C, et al. Effects of CaO/SiO2 ratio and heat treatment parameters on the crystallization behavior,microstructure and properties of SiO2-CaO-Al2O3-Na2O glass ceramics[J]. J Non Cryst Solids, 2020, 538: 120023.
[21] LUAN J D, LI A M, SU T, et al. Synthesis of nucleated glass?ceramics using oil shale fly ash[J]. J Hazard Mater, 2010, 173(1–3): 427–432.
[22] GAO Y, CHEN J Y, YANG Y, et al. Effect of glass?ceramics network intermediate Al2O3 content on up-conversion luminescence in Er3+/Yb3+ Co-doped NaYF4 oxy-fluoride glass?ceramics[J]. J Eur Ceram Soc, 2023, 43(8): 3591–3599.
[23] ZHANG W Y, LIU H. A low cost route for fabrication of wollastonite glass–ceramics directly using soda-lime waste glass by reactive crystallization–sintering[J]. Ceram Int, 2013, 39(2): 1943–1949.
[24] ZHANG Z K, WANG J, LIU L N, et al. Preparation and characterization of glass?ceramics via co-sintering of coal fly ash and oil shale ash-derived amorphous slag[J]. Ceram Int, 2019, 45(16):20058–20065.
[25] ZHANG S, ZHANG Y L, QU Z M. Effect of soluble Cr2O3 on the silicate network, crystallization kinetics, mineral phase, microstructure of CaO-MgO-SiO2-(Na2O) glass ceramics with different CaO/MgO ratio[J]. Ceram Int, 2019, 45(9): 11216–11225.
[26] WANG S F, LAI B C, HSU Y F, et al. Relationship between the structural and dielectric properties of sol?gel derived CaO-MgO-B2O3-SiO2 glass?ceramics for 5G applications in the millimeter-wave bands[J]. Ceram Int, 2023, 49(23): 38945–38953.
[27] ZHANG Y X, ZHANG T Z, LI H R, et al. Effect of surface grain structure on reaction of residual glass phase with hydrofluoric acid in glass?ceramics[J]. Ceram Int, 2023, 49(19): 32228–32236.
[28] SHANG W X, PENG Z W, XU F C, et al. Preparation of enstatite-spinel based glass?ceramics by co-utilization of ferronickel slag and coal fly ash[J]. Ceram Int, 2021, 47(20): 29400–29409.
[29] KANG J F, WANG J, ZHOU X Y, et al. Effects of alkali metal oxides on crystallization behavior and acid corrosion resistance of cordierite-based glass?ceramics[J]. J Non Cryst Solids, 2018, 481:184–190.
[30] DENG W, CHENG J S, TIAN P J, et al. Chemical durability and weathering resistance of canasite based glass and glass?ceramics[J]. J Non Cryst Solids, 2012, 358(21): 2847–2854.
[31] GARAI M, KARMAKAR B, ROY S. Cr+6 controlled nucleation in SiO2-MgO-Al2O3-K2O-B2O3-F glass sealant (SOFC)[J]. Front Mater,2020, 7: 57.
[32] DU Y S, MA J, SHI Y, et al. Crystallization characteristics and corrosion properties of slag glass?ceramic prepared from blast furnace slag containing rare earth[J]. J Non Cryst Solids, 2020, 532: 119880.