• Optics and Precision Engineering
  • Vol. 32, Issue 17, 2718 (2024)
Shizheng SUN*, Jiang HE, Hongyu QIN, Xiangyang XU, and Renxiang CHEN
Author Affiliations
  • School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing400074, China
  • show less
    DOI: 10.37188/OPE.20243217.2718 Cite this Article
    Shizheng SUN, Jiang HE, Hongyu QIN, Xiangyang XU, Renxiang CHEN. Double-layer cross-type FBG tactile sensing unit based on strain sensitization[J]. Optics and Precision Engineering, 2024, 32(17): 2718 Copy Citation Text show less
    Fiber Bragg grating sensing principle
    Fig. 1. Fiber Bragg grating sensing principle
    Schematic diagram of flexible packaging of sensing unit
    Fig. 2. Schematic diagram of flexible packaging of sensing unit
    Schematic diagram of loading
    Fig. 3. Schematic diagram of loading
    Dimensions of sensing unit
    Fig. 4. Dimensions of sensing unit
    Simulation analysis of package body
    Fig. 5. Simulation analysis of package body
    Longitudinal path stress profile
    Fig. 6. Longitudinal path stress profile
    Static simulation deformation cloud
    Fig. 7. Static simulation deformation cloud
    Mapping of load to wavelength drift
    Fig. 8. Mapping of load to wavelength drift
    Temperature simulation deformation cloud
    Fig. 9. Temperature simulation deformation cloud
    Temperature and wavelength drift mapping relationship
    Fig. 10. Temperature and wavelength drift mapping relationship
    Sensor fabrication process
    Fig. 11. Sensor fabrication process
    Robots with FBG sensing unit
    Fig. 12. Robots with FBG sensing unit
    Experimental platform for tactile calibration
    Fig. 13. Experimental platform for tactile calibration
    Static pressure response curve
    Fig. 14. Static pressure response curve
    Static pressure error analysis
    Fig. 15. Static pressure error analysis
    Temperature response curves
    Fig. 16. Temperature response curves
    Static temperature error analysis
    Fig. 17. Static temperature error analysis
    Experimental platform for tactile perception
    Fig. 18. Experimental platform for tactile perception
    Contact temperature response curve
    Fig. 19. Contact temperature response curve
    FBG wavelength drift versus contact force and temperature
    Fig. 20. FBG wavelength drift versus contact force and temperature
    FBG wavelength drift versus temperature for different contact forces
    Fig. 21. FBG wavelength drift versus temperature for different contact forces
    FBG wavelength drift versus contact force at different temperatures
    Fig. 22. FBG wavelength drift versus contact force at different temperatures
    Co-awareness experimental errors
    Fig. 23. Co-awareness experimental errors
    StructureMaterialsYoung modulus /MPaPoisson's ratioCoefficient of thermal expansion /K-1Heat transfer coefficient/(W·m-1·K-1
    Encapsulated unitSilicone5.10.492.0×10-40.3
    PressuriserStructural steel2.5×1050.304.3×10-560.5
    FBGFibre5.6×1040.171.2×10-51.2
    Steel pipeStainless steels1.93×1050.311.7×10-515.1
    Table 1. Material properties
    Number of experimentsWarming sensing sensitivity/(pm·℃-1Cooling sensing sensitivity/(pm·℃-1
    FBG1FBG2FBG1FBG2
    111.82911.28211.73911.157
    211.80811.25711.82811.212
    311.78611.22811.65911.089
    Average value11.80811.25611.74211.153
    Table 2. FBG static temperature sensing sensitivity
    Shizheng SUN, Jiang HE, Hongyu QIN, Xiangyang XU, Renxiang CHEN. Double-layer cross-type FBG tactile sensing unit based on strain sensitization[J]. Optics and Precision Engineering, 2024, 32(17): 2718
    Download Citation