• Photonics Research
  • Vol. 12, Issue 8, 1730 (2024)
Heng Chen1,2,†, Hui Zhang3,†, Jing Zhou1,2, Chen Ma1,2..., Qian Huang1,2, Hanxing Wang1,2, Qinghua Ren1,2, Nan Wang1,2, Chengkuo Lee4,5 and Yiming Ma1,2,*|Show fewer author(s)
Author Affiliations
  • 1School of Microelectronics, Shanghai University, Shanghai 201800, China
  • 2Shanghai Collaborative Innovation Center of Intelligent Sensing Chip Technology, Shanghai University, Shanghai 201800, China
  • 3Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • 4Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 5Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
  • show less
    DOI: 10.1364/PRJ.521439 Cite this Article Set citation alerts
    Heng Chen, Hui Zhang, Jing Zhou, Chen Ma, Qian Huang, Hanxing Wang, Qinghua Ren, Nan Wang, Chengkuo Lee, Yiming Ma, "High-performance and wavelength-transplantable on-chip Fourier transform spectrometer using MEMS in-plane reconfiguration," Photonics Res. 12, 1730 (2024) Copy Citation Text show less
    References

    [1] Z. Yang, T. Albrow-Owen, W. Cai. Miniaturization of optical spectrometers. Science, 371, eabe0722(2021).

    [2] Z. Yang, T. Albrow-Owen, H. Cui. Single-nanowire spectrometers. Science, 365, 1017-1020(2019).

    [3] D. Pohl, M. Reig Escalé, M. Madi. An integrated broadband spectrometer on thin-film lithium niobate. Nat. Photonics, 14, 24-29(2020).

    [4] M. Inoue, I. Morino, O. Uchino. Validation of XCH4 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data. Atmos. Meas. Tech., 7, 2987-3005(2014).

    [5] D. J. Mulla. Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst. Eng., 114, 358-371(2013).

    [6] L. Gao, Y. Qu, L. Wang. Computational spectrometers enabled by nanophotonics and deep learning. Nanophotonics, 11, 2507-2529(2022).

    [7] A. Y. Zhu, W.-T. Chen, M. Khorasaninejad. Ultra-compact visible chiral spectrometer with meta-lenses. APL Photon., 2, 036103(2017).

    [8] G. Calafiore, A. Koshelev, S. Dhuey. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl., 3, e203(2014).

    [9] A. Koshelev, G. Calafiore, C. Peroz. Combination of a spectrometer-on-chip and an array of Young’s interferometers for laser spectrum monitoring. Opt. Lett., 39, 5645-5648(2014).

    [10] J. P. Carmo, R. P. Rocha, M. Bartek. A review of visible-range Fabry-Perot microspectrometers in silicon for the industry. Opt. Laser Technol., 44, 2312-2320(2012).

    [11] Y. Yao, J. Hou, H. Liu. Design of programmable multi-wavelength tunable filter on lithium niobate. Results Phys., 15, 102741(2019).

    [12] J. Zhang, Z. Cheng, J. Dong. Cascaded nanobeam spectrometer with high resolution and scalability. Optica, 9, 517-521(2022).

    [13] L. Li, C. Peng, Y. Qi. Design of an on-chip Fourier transform spectrometer using waveguide directional couplers and NEMS. Opt. Express, 26, 30362-30370(2018).

    [14] M. C. M. M. Souza, A. Grieco, N. C. Frateschi. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat. Commun., 9, 665(2018).

    [15] A. V. Velasco, P. Cheben, P. J. Bock. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett., 38, 706-708(2013).

    [16] T. T. D. Dinh, D. González-Andrade, M. Montesinos-Ballester. Silicon photonic on-chip spatial heterodyne Fourier transform spectrometer exploiting the Jacquinot’s advantage. Opt. Lett., 46, 1341-1344(2021).

    [17] H. Podmore, A. Scott, P. Cheben. Athermal planar-waveguide Fourier-transform spectrometer for methane detection. Opt. Express, 25, 33018-33028(2017).

    [18] L. Zhang, J. Chen, C. Ma. Research progress on on-chip Fourier transform spectrometer. Laser Photon. Rev., 15, 2100016(2021).

    [19] H. Podmore, A. Scott, P. Cheben. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt. Lett., 42, 1440-1443(2017).

    [20] D. M. Kita, B. Miranda, D. Favela. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun., 9, 4405(2018).

    [21] K. Wang, J. Li, D. Lu. Algorithmic enhancement of spectral resolution of a lithium niobate (LiNbO3) waveguide-based miniature Fourier transform spectrometer. Appl. Spectrosc., 70, 1685-1691(2016).

    [22] B. Redding, S. F. Liew, R. Sarma. Compact spectrometer based on a disordered photonic chip. Nat. Photonics, 7, 746-751(2013).

    [23] Z. Cheng, Y. Zhao, J. Zhang. Generalized modular spectrometers combining a compact nanobeam microcavity and computational reconstruction. ACS Photon., 9, 74-81(2022).

    [24] W. Hadibrata, H. Noh, H. Wei. Compact, high-resolution inverse-designed on-chip spectrometer based on tailored disorder modes. Laser Photon. Rev., 15, 2000556(2021).

    [25] S. F. Liew, B. Redding, M. A. Choma. Broadband multimode fiber spectrometer. Opt. Lett., 41, 2029-2032(2016).

    [26] S. Yuan, D. Naveh, K. Watanabe. A wavelength-scale black phosphorus spectrometer. Nat. Photonics, 15, 601-607(2021).

    [27] H. Xu, Y. Qin, G. Hu. Cavity-enhanced scalable integrated temporal random-speckle spectrometry. Optica, 10, 1177-1188(2023).

    [28] H. Xu, Y. Qin, G. Hu. Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule. Light Sci. Appl., 12, 64(2023).

    [29] D. U. Kim, Y. J. Park, D. Y. Kim. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photonics, 17, 1089-1096(2023).

    [30] S. Han, T. J. Seok, N. Quack. Large-scale silicon photonic switches with movable directional couplers. Optica, 2, 370-375(2015).

    [31] S. Gyger, J. Zichi, L. Schweickert. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun., 12, 1408(2021).

    [32] N. Quack, A. Y. Takabayashi, H. Sattari. Integrated silicon photonic MEMS. Microsyst. Nanoeng., 9, 27(2023).

    [33] Q. Qiao, X. Liu, Z. Ren. MEMS-enabled on-chip computational mid-infrared spectrometer using silicon photonics. ACS Photon., 9, 2367-2377(2022).

    [34] H. H. Yoon, H. A. Fernandez, F. Nigmatulin. Miniaturized spectrometers with a tunable van der Waals junction. Science, 378, 296-299(2022).

    [35] G. O’Brien, D. J. Monk, L. Lin. MEMS cantilever beam electrostatic pull-in model. Proc. SPIE, 4593, 31-41(2001).

    [36] Y. Chang, S. Xu, B. Dong. Development of triboelectric-enabled tunable Fabry-Pérot photonic-crystal-slab filter towards wearable mid-infrared computational spectrometer. Nano Energy, 89, 106446(2021).

    [37] Q. Qiao, M. S. Yazici, B. Dong. Multifunctional mid-infrared photonic switch using a MEMS-based tunable waveguide coupler. Opt. Lett., 45, 5620-5623(2020).

    [38] T. Mohammad, S. He, R. Ben Mrad. A MEMS optical phased array based on pitch tunable silicon micromirrors for LiDAR scanners. J. Microelectromech. Syst., 30, 712-724(2021).

    [39] P. Bauwens, S. Cornelis, J. Doutreloigne. A leakage compensated charge control driving circuit with sensor feedback for a comb drive actuator. Sens. Actuators A, 329, 112799(2021).

    [40] P. G. Del Corro, M. Imboden, D. J. Bishop. Comb drive designs with minimized levitation. J. Microelectromech. Syst., 25, 1025-1032(2016).

    [41] A. Li, J. Davis, A. Grieco. Fabrication-tolerant Fourier transform spectrometer on silicon with broad bandwidth and high resolution. Photon. Res., 8, 219-224(2020).

    [42] U. Paudel, T. Rose. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer. Opt. Express, 28, 16469-16485(2020).

    [43] M. Yang, M. Li, J.-J. He. Static FT imaging spectrometer based on a modified waveguide MZI array. Opt. Lett., 42, 2675-2678(2017).

    [44] H. Xu, Y. Qin, G. Hu. Scalable integrated two-dimensional Fourier-transform spectrometry. Nat. Commun., 15, 436(2024).

    [45] S. N. Zheng, J. Zou, H. Cai. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat. Commun., 10, 2349(2019).

    [46] L. Lu, H. Zhang, X. Li. Low temperature sensitivity on-chip Fourier-transform spectrometer based on dual-layer Si3N4 spiral waveguides. Photon. Res., 11, 591-599(2023).

    [47] A. Li, Y. Fainman. Integrated silicon Fourier transform spectrometer with broad bandwidth and ultra‐high resolution. Laser Photon. Rev., 15, 2000358(2021).

    [48] J. Du, H. Zhang, X. Wang. High-resolution on-chip Fourier transform spectrometer based on cascaded optical switches. Opt. Lett., 47, 218-221(2022).

    [49] H. Yasuda, P. R. Buskohl, A. Gillman. Mechanical computing. Nature, 598, 39-48(2021).

    Heng Chen, Hui Zhang, Jing Zhou, Chen Ma, Qian Huang, Hanxing Wang, Qinghua Ren, Nan Wang, Chengkuo Lee, Yiming Ma, "High-performance and wavelength-transplantable on-chip Fourier transform spectrometer using MEMS in-plane reconfiguration," Photonics Res. 12, 1730 (2024)
    Download Citation