• International Journal of Extreme Manufacturing
  • Vol. 4, Issue 3, 32002 (2022)
Ruiyi Liu1、2, Chenglong Zhou3、4, Yong Zhang3、4, Zheng Cui1、*, Xiaohu Wu2, and Hongliang Yi3、4
Author Affiliations
  • 1Institute for Advanced Technology, Shandong University, Jinan 250061, People’s Republic of China
  • 2Shandong Institute of Advanced Technology, Jinan 250100, People’s Republic of China
  • 3School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, People’s Republic of China
  • 4Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin 150001, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/ac64d6 Cite this Article
    Ruiyi Liu, Chenglong Zhou, Yong Zhang, Zheng Cui, Xiaohu Wu, Hongliang Yi. Near-field radiative heat transfer in hyperbolic materials[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 32002 Copy Citation Text show less
    References

    [1] Modest M F 2013 Radiative Heat Transfer (Amsterdam: Elsevier Ltd)

    [2] Park K, Basu S, King W P and Zhang Z M 2008 Performance analysis of near-field thermophotovoltaic devices considering absorption distribution J. Quant. Spectrosc. Radiat. Transfer 109 305–16

    [3] Cuevas J C and García-Vidal F J 2018 Radiative heat transfer ACS Photonics 5 3896–915

    [4] Zhang Z M 2007 Nano/microscale Heat Transfer (New York: McGraw-Hill)

    [5] Polder D and Hove M V 1971 Theory of radiative heat transfer between closely spaced bodies Phys. Rev. B 4 3303–14

    [6] Hu L, Narayanaswamy A, Chen X and Chen G 2008 Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law Appl. Phys. Lett. 92 133106

    [8] Watjen J I, Zhao B and Zhang Z M 2016 Near-field radiative heat transfer between doped-Si parallel plates separated by a spacing down to 200 nm Appl. Phys. Lett. 109 689

    [9] Yang J, Du W, Su Y, Fu Y, Gong S, He S and Ma Y 2018 Observing of the super-Planckian near-field thermal radiation between graphene sheets Nat. Commun. 9 4033

    [10] Basu S, Zhang Z M and Fu C J 2009 Review of near-field thermal radiation and its application to energy conversion Int. J. Energy Res. 33 1203–32

    [11] Latella I, Biehs S A and Ben-Abdallah P 2021 Smart thermal management with near-field thermal radiation Opt. Express 29 24816–33

    [12] Messina R and Ben-Abdallah P 2013 Graphene-based photovoltaic cells for near-field thermal energy conversion Sci. Rep. 3 1383

    [13] Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M and Fan S 2017 High-performance near-field thermophotovoltaics for waste heat recovery Nano Energy 41 344–50

    [14] Ilic O, Jablan M, Joannopoulos J D, Celanovic I and Soljacic M 2012 Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems Opt. Express 20 A366–84

    [15] Latella I and Ben-Abdallah P 2021 Graphene-based cautonomous pyroelectric system for near-field energy conversion Sci. Rep. 11 19489

    [16] Dimatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M and Fonstad C G 2001 Enhanced photogeneration of carriers in a semiconductor via coupling across a nonisothermal nanoscale vacuum gap Appl. Phys. Lett. 79 1894–6

    [17] Narayanaswamy A and Chen G 2003 Surface modes for near field thermophotovoltaics Appl. Phys. Lett. 82 3544–6

    [18] Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P and Meyhofer E 2018 Nanogap near-field thermophotovoltaics Nat. Nanotechnol. 13 806–11

    [19] Bhatt G R, Zhao B, Roberts S, Datta I, Mohanty A, Lin T, Hartmann J-M, St-Gelais R, Fan S and Lipson M 2020 Integrated near-field thermo-photovoltaics for heat recycling Nat. Commun. 11 2545

    [20] Francoeur M, Vaillon R and Mengüc M P 2011 Thermal impacts on the performance of nanoscale-gap thermophotovoltaic power generators IEEE Trans. Energy Convers. 26 686–98

    [21] Bright T J, Wang L P and Zhang Z M 2014 Performance of near-field thermophotovoltaic cells enhanced with a backside reflector J. Heat Transfer 136 062701

    [22] Lim M, Jin S, Lee S S and Lee B J 2015 Graphene-assisted Si-InSb thermophotovoltaic system for low temperature applications Opt. Express 23 240–53

    [23] Lim M, Lee S S and Lee B J 2017 Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances J. Quant. Spectrosc. Radiat. Transfer 197 84–94

    [24] Otey C R, Lau W T and Fan S 2010 Thermal rectification through vacuum Phys. Rev. Lett. 104 154301

    [25] Zhu L, Otey C R and Fan S 2013 Ultrahigh-contrast and large-bandwidth thermal rectification in near-field electromagnetic thermal transfer between nanoparticles Phys. Rev. B 88 4159–73

    [26] Ott A, Messina R, Ben-Abdallah P and Biehs S-A 2019 Radiative thermal diode driven by non-reciprocal surface waves Appl. Phys. Lett. 114 163105.1–163105.4

    [27] Basu S and Francoeur M 2011 Near-field radiative transfer based thermal rectification using doped silicon Appl. Phys. Lett. 98 113106

    [28] Zwol P, Joulain K, Ben-Abdallah P and Chevrier J 2011 Phonon-polaritons enhance near field thermal transfer across the phase transition of VO2 Phys. Rev. B 84 161413

    [29] Wang L P and Zhang Z M 2013 Thermal rectification enabled by near-field radiative heat transfer between intrinsic silicon and a dissimilar material Nanoscale Microscale Thermophys. Eng. 17 337–48

    [30] Xu G, Sun J, Mao H and Pan T 2018 Surface plasmon-enhanced near-field thermal rectification in graphene-based structures J. Appl. Phys. 124 183104

    [31] Ben-Abdallah P and Biehs S A 2013 Phase-change radiative thermal diode Appl. Phys. Lett. 103 191907

    [32] Yang Y, Basu S and Wang L 2013 Radiation-based near-field thermal rectification with phase transition materials Appl. Phys. Lett. 103 648–348

    [33] Huang J, Li Q, Zheng Z and Xuan Y 2013 Thermal rectification based on thermochromic materials Int. J. Heat Mass Transfer 67 575–80

    [34] Ito K, Nishikawa K, Iizuka H and Toshiyoshi H 2014 Experimental investigation of radiative thermal rectifier using vanadium dioxide Appl. Phys. Lett. 105 1121

    [35] Fiorino A et al 2018 A thermal diode based on nanoscale thermal radiation ACS Nano 12 5774–9

    [36] Moncada-Villa E and Cuevas J C 2021 Normal metal-superconductor near-field thermal diodes and transistors Phys. Rev. Appl. 15 024036

    [37] Chen K, Santhanam P and Fan S 2016 Near-field enhanced negative luminescent refrigeration Phys. Rev. Appl. 6 024014

    [38] Chen K, Santhanam P, Sandhu S, Zhu L and Fan S 2015 Heat-flux control and solid-state cooling by regulating chemical potential of photons in near-field electromagnetic heat transfer Phys. Rev. B 91 1825–32

    [39] Zhu L, Fiorino A, Thompson D, Mittapally R, Meyhofer E and Reddy P 2019 Near-field photonic cooling through control of the chemical potential of photons Nature 566 239–44

    [40] Latella I, Messina R, Rubi J M and Ben-Abdallah P 2018 Radiative heat shuttling Phys. Rev. Lett. 121 023903

    [41] Buddhiraju S, Li W and Fan S 2020 Photonic refrigeration from time-modulated thermal emission Phys. Rev. Lett. 124 077402

    [42] Ben-Abdallah P and Biehs S-A 2013 Near-field thermal transistor Phys. Rev. Lett. 112 044301

    [43] Mulet J-P, Joulain K, Carminati R and Greffet J-J 2002 Enhanced radiative heat transfer at nanometric distances Microscale Thermophys. Eng. 6 209–22

    [44] Zheng Z and Xuan Y 2011 Theory of near-field radiative heat transfer for stratified magnetic media Int. J. Heat Mass Transfer 54 1101–10

    [45] Ghashami M, Geng H, Kim T, Iacopino N, Cho S K and Park K 2018 Precision measurement of phonon-polaritonic near-field energy transfer between macroscale planar structures under large thermal gradients Phys. Rev. Lett. 120 175901

    [46] Fu C J and Tan W C 2009 Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating J. Quant. Spectrosc. Radiat. Transfer 110 1027–36

    [47] Ben-Abdallah P, Joulain K, Drevillon J and Domingues G 2009 Near-field heat transfer mediated by surface wave hybridization between two films J. Appl. Phys. 106 18517

    [48] Basu S, Lee B J and Zhang Z M 2010 Near-field radiation calculated with an improved dielectric function model for doped silicon J. Heat Transfer 132 765–72

    [49] Francoeur M, Mengü M P and Vaillon R 2010 Spectral tuning of near-field radiative heat flux between two thin silicon carbide films J. Phys. D: Appl. Phys. 43 075501

    [50] Zhang Y, Yi H-L and Tan H-P 2018 Near-field radiative heat transfer between black phosphorus sheets via anisotropic surface plasmon polaritons ACS Photonics 5 3739–47

    [51] Francoeur M, Mengüc M P and Vaillon R 2008 Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films Appl. Phys. Lett. 93 043109

    [52] Shen S, Narayanaswamy A and Chen G 2009 Surface phonon polaritons mediated energy transfer between nanoscale gaps Nano Lett. 9 2909–13

    [53] Shchegrov A V, Joulain K, Carminati R and Greffet J-J 2017 Near-field spectral effects due to electromagnetic surface excitations Phys. Rev. Lett. 85 1548

    [54] Fu C J and Zhang Z M 2006 Nanoscale radiation heat transfer for silicon at different doping levels Int. J. Heat Mass Transfer 49 1703–18

    [55] Rousseau E, Laroche M and Greffet J J 2009 Radiative heat transfer at nanoscale mediated by surface plasmons for highly doped silicon Appl. Phys. Lett. 95 351

    [56] Bernardi M P, Milovich D and Francoeur M 2016 Radiative heat transfer exceeding the blackbody limit between macroscale planar surfaces separated by a nanosize vacuum gap Nat. Commun. 7 12900

    [57] Liu R, Ge L, Wu B, Cui Z and Wu X 2021 Near-field radiative heat transfer between topological insulators via surface plasmon polaritons iScience 24 103408

    [58] Shekhar P, Atkinson J and Jacob Z 2014 Hyperbolic metamaterials: fundamentals and applications Nano Converg. 1 14

    [59] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Hyperbolic metamaterials Nat. Photon. 7 948–57

    [60] Guo Y, Newman W, Cortes C L and Jacob Z 2012 Applications of hyperbolic metamaterial substrates Adv. Optoelectron. 2012 452502

    [61] Cortes C L, Newman W, Molesky S and Jacob Z 2012 Quantum nanophotonics using hyperbolic metamaterials J. Opt. 14 063001

    [62] Biehs S-A, Tschikin M and Ben-Abdallah P 2012 Hyperbolic metamaterials as an analog of a blackbody in the near field Phys. Rev. Lett. 109 104301

    [63] Smith D R and Schurig D 2012 Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors Phys. Rev. Lett. 90 077405

    [64] Yang X, Yao J, Rho J, Yin X and Zhang X 2012 Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws Nat. Photon. 6 450–4

    [65] Iorsh I, Mukhin I S, Shadrivov I V, Belov P A and Kivshar Y S 2013 Hyperbolic metamaterials based on multilayer graphene structures Phys. Rev. B 87 478–86

    [66] Lin Y and Connell J W 2012 Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene Nanoscale 4 6908

    [67] Orlov A A, Voroshilov P M, Belov P A and Kivshar Y S 2011 Engineered optical nonlocality in nanostructured metamaterials Phys. Rev. B 84 045424

    [68] Guclu C, Campione S and Capolino F 2012 Hyperbolic metamaterial as super absorber for scattered fields generated at its surface Phys. Rev. B 86 205130

    [69] Chebykin A V, Orlov A A, Vozianova A V, Maslovski S I, Kivshar Y S and Belov P A 2011 Nonlocal effective medium model for multilayered metal-dielectric metamaterials Phys. Rev. B 84 115438

    [70] Chebykin A V, Orlov A A, Simovski C R, Kivshar Y S and Belov P A 2012 Nonlocal effective parameters of multilayered metal-dielectric metamaterials Phys. Rev. B 86 64–73

    [71] Wurtz G A, Pollard R, Hendren W, Wiederrecht G P, Gosztola D J, Podolskiy V A and Zayats A V 2011 Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality Nat. Nanotechnol. 6 107–11

    [72] Kanungo J and Schilling J 2010 Experimental determination of the principal dielectric functions in silver nanowire metamaterials Appl. Phys. Lett. 97 77

    [73] Yao J, Liu Z, Liu Y, Wang Y, Sun C, Bartal G, Stacy A M and Zhang X 2008 Optical negative refraction in bulk metamaterials of nanowires Science 321 930

    [74] Simovski C R, Belov P A, Atrashchenko A V and Kivshar Y S 2012 Wire metamaterials: physics and applications Adv. Mater. 24 4229–48

    [75] Yao J, Yang X, Yin X, Bartal G and Zhang X 2011 Three-dimensional nanometer-scale optical cavities of indefinite medium Proc. Natl Acad. Sci. USA 108 11327–31

    [76] Noginov M A, Barnakov Y A, Zhu G, Tumkur T, Li H and Narimanov E E 2009 Bulk photonic metamaterial with hyperbolic dispersion Appl. Phys. Lett. 94 151105

    [77] Debu D T, Ladani F T, French D, Bauman S J and Herzog J B 2019 Hyperbolic plasmon–phonon dispersion on group velocity reversal and tunable spontaneous emission in graphene–ferroelectric substrate npj 2D Mater. Appl. 3 30

    [78] Othman M, Guclu C and Capolino F 2013 Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption Opt. Express 21 7614–32

    [79] Sreekanth K V, Luca A D and Strangi G 2013 Negative refraction in graphene-based hyperbolic metamaterials Appl. Phys. Lett. 103 509

    [80] Smith D R, Kolinko P and Schurig D 2004 Negative refraction in indefinite media J. Opt. Soc. Am. B 21 1032–43

    [81] Fang A, Koschny T and Soukoulis C M 2009 Optical anisotropic metamaterials: negative refraction and focusing Phys. Rev. B 79 1377–81

    [82] Li J, Fok L, Yin X, Bartal G and Zhang X 2009 Experimental demonstration of an acoustic magnifying hyperlens Nat. Mater. 8 931–4

    [83] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies Nat. Commun. 1 143

    [84] Liu X L, Bright T J and Zhang Z M 2014 Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials J. Heat Transfer 136 092703

    [85] Narimanov E E and Kildishev A V 2015 Naturally hyperbolic Nat. Photon. 9 214–6

    [86] Jacob Z 2014 Hyperbolic phonon-polaritons Nat. Mater. 13 1081–3

    [87] Caldwell J D et al 2014 Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride Nat. Commun. 5 5221

    [88] Wu X 2018 Theoretical investigation of the effect of hexagonal boron nitride on perfect absorption in infrared regime Opt. Commun. 425 172–5

    [89] Dong W et al 2020 Broad-spectral-range sustainability and controllable excitation of hyperbolic phonon polaritons in alpha-MoO3 Adv. Mater. 32 2002014

    [90] Zheng Z et al 2018 Highly confined and tunable hyperbolic phonon polaritons in van der Waals semiconducting transition metal oxides Adv. Mater. 30 e1705318

    [91] Zheng Z et al 2019 A mid-infrared biaxial hyperbolic van der Waals crystal Sci. Adv. 5 eaav8690

    [92] Dixit S, Sahoo N R, Mall A and Kumar A 2021 Mid infrared polarization engineering via sub-wavelength biaxial hyperbolic van der Waals crystals Sci. Rep. 11 6612

    [93] Kabashin A V, Evans P, Pastkovsky S, Hendren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A and Zayats A V 2009 Plasmonic nanorod metamaterials for biosensing Nat. Mater. 8 867–71

    [94] Pollard R J, Murphy A, Hendren W R, Evans P R, Atkinson R, Wurtz G A, Zayats A V and Podolskiy V A 2009 Optical nonlocalities and additional waves in epsilon-near-zero metamaterials Phys. Rev. Lett. 102 127405

    [95] Yao J, Wang Y, Tsai K-T, Liu Z, Yin X, Bartal G, Stacy A M, Wang Y-L and Zhang X 2011 Design, fabrication and characterization of indefinite metamaterials of nanowires Phil. Trans. A 369 3434–46

    [96] Chen R, Lu M-C, Srinivasan V, Wang Z, Cho H H and Majumdar A 2009 Nanowires for enhanced boiling heat transfer Nano Lett. 9 548–53

    [97] Evans P, Hendren W R, Atkinson R, Wurtz G A, Dickson W, Zayats A V and Pollard R J 2006 Growth and properties of gold and nickel nanorods in thin film alumina Nanotechnology 17 5746–53

    [98] Nielsch K, Müller F, Li A-P and Gosele U 2000 Uniform nickel deposition into ordered alumina pores by pulsed electrodeposition Adv. Mater. 12 582–6

    [99] Shi J, Liu B, Li P, Ng L Y and Shen S 2015 Near-field energy extraction with hyperbolic metamaterials Nano Lett. 15 1217–21

    [100] Dickson W, Wurtz G A, Evans P, O’Connor D, Atkinson R, Pollard R and Zayats A V 2007 Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties Phys. Rev. B 76 3398–407

    [101] Wurtz G A, Evans P R, Hendren W, Atkinson R, Dickson W, Pollard R J, Zayats A V, Harrison W and Bower C 2007 Molecular plasmonics with tunable exciton-plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies Nano Lett. 7 1297

    [102] Du W, Yang J, Zhang S, Iqbal N, Dang Y, Xu J-B and Ma Y 2020 Super-Planckian near-field heat transfer between hyperbolic metamaterials Nano Energy 78 105264

    [103] Dai Z, Li Y, Duan G, Jia L and Cai W 2012 Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface ACS Nano 6 6706

    [104] Yang L, Kou P, He N, Dai H and He S 2017 Anomalous light trapping enhancement in a two-dimensional gold nanobowl array with an amorphous silicon coating Opt. Express 25 14114–24

    [105] Jacob Z, Kim J-Y, Naik G V, Boltasseva A, Narimanov E E and Shalaev V M 2010 Engineering photonic density of states using metamaterials Appl. Phys. B 100 215–8

    [106] Krishnamoorthy H N, Jacob Z, Narimanov E, Kretzschmar I and Menon V M 2011 Topological transitions in metamaterials Science 336 205–9

    [107] Lim M, Song J, Lee S S and Lee B J 2018 Tailoring near-field thermal radiation between metallo-dielectric multilayers using coupled surface plasmon polaritons Nat. Commun. 9 4302

    [108] Hoffman A J, Alekseyev L, Howard S S, Franz K J, Wasserman D, Podolskiy V A, Narimanov E E, Sivco D L and Gmachl C 2007 Negative refraction in semiconductor metamaterials Nat. Mater. 6 946–50

    [109] Korobkin D, Neuner B, Fietz C, Jegenyes N, Ferro G and Shvets G 2010 Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium Opt. Express 18 22734–46

    [110] Naik G V, Kim J and Boltasseva A 2011 Oxides and nitrides as alternative plasmonic materials in the optical range Opt. Mater. Express 1 1090–9

    [111] Chen W, Thoreson M D, Ishii S, Kildishev A V and Shalaev V M 2010 Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer Opt. Express 18 5124–34

    [112] Nagpal P, Lindquist N C, Oh S-H and Norris D J 2009 Ultrasmooth patterned metals for plasmonics and metamaterials Science 325 594

    [113] Hong L, Wang B, Leong E S P, Yang P, Zong Y, Si G, Teng J and Maier S A 2010 Enhanced surface plasmon resonance on a smooth silver film with a seed growth layer ACS Nano 4 3139–46

    [114] Coleman J N et al 2011 Two-dimensional nanosheets produced by liquid exfoliation of layered materials Science 331 568–71

    [115] Zhang X, Coleman A C, Katsonis N, Browne W R, van Wees B J and Feringa B L 2010 Dispersion of graphene in ethanol using a simple solvent exchange method Chem. Commun. 46 7539–41

    [116] Taniguchi T and Watanabe K 2007 Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent J. Cryst. Growth 303 525–9

    [117] Watanabe K, Taniguchi T and Kanda H 2004 Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal Nat. Mater. 3 404

    [118] Pacilé D, Meyer J C, Girit c o and Zettl A 2008 The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes Appl. Phys. Lett. 92 666

    [119] Gorbachev R V et al 2011 Hunting for monolayer boron nitride: optical and Raman signatures Small 7 465–8

    [120] Jin C, Lin F, Suenaga K and Iijima S 2009 Fabrication of a freestanding boron nitride single layer and its defect assignments Phys. Rev. Lett. 102 195505

    [121] Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J and Kaiser U 2009 Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes Nano Lett. 9 2683–9

    [122] Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W and Zettl A 2009 Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy Phys. Rev. B 80 155425

    [123] Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties Adv. Mater. 21 2889–93

    [124] Yu J, Huang X, Wu C, Wu X, Wang G and Jiang P 2012 Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties Polymer 53 471–80

    [125] Song L et al 2010 Large scale growth and characterization of atomic hexagonal boron nitride layers Nano Lett. 10 3209–15

    [126] Shi Y et al 2010 Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition Nano Lett. 10 4134–9

    [127] Kim K K et al 2012 Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition Nano Lett. 12 161–6

    [128] Xie W et al 2016 Nanoscale insights into the hydrogenation process of layered alpha-MoO3 ACS Nano 10 1662–70

    [129] Wang Y, Du X, Wang J, Su M, Wan X, Meng H, Xie W, Xu J and Liu P 2017 Growth of large-scale, large-size, few-layered alpha-MoO3 on SiO2 and its photoresponse mechanism ACS Appl. Mater. Interfaces 9 5543–9

    [130] Dai S et al 2014 Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride Science 343 1125–9

    [131] Li P, Lewin M, Kretinin A V, Caldwell J D, Novoselov K S, Taniguchi T, Watanabe K, Gaussmann F and Taubner T 2015 Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing Nat. Commun. 6 7507

    [132] Li N et al 2021 Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride Nat. Mater. 20 43–48

    [133] Yao J, Tsai K-T, Wang Y, Liu Z, Bartal G, Wang Y-L and Zhang X 2009 Imaging visible light using anisotropic metamaterial slab lens Opt. Express 17 22380–5

    [134] Rytov S M, Kravtsov Y A and Tatarskii V I 1989 Priniciples of Statistical Radiophysics. 3. Elements of Random Fields (Berlin: Springer)

    [135] Joulain K, Mulet J-P, Marquier F, Carminati R and Greffet J-J 2005 Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field Surf. Sci. Rep. 57 59–112

    [136] Francoeur M and Pinar Mengüc M 2008 Role of fluctuational electrodynamics in near-field radiative heat transfer J. Quant. Spectrosc. Radiat. Transfer 109 280–93

    [137] Wu X, Fu C and Zhang Z 2018 Influence of hBN orientation on the near-field radiative heat transfer between graphene/hBN heterostructures J. Photon. Energy 9 032702

    [138] Rosa F, Dalvit D and Milonni P W 2008 Casimir interactions for anisotropic magnetodielectric metamaterials Phys. Rev. A 78 032117

    [139] Mccauley A P, Rosa F S S, Rodriguez A W, Joannopoulos J D, Dalvit D A R and Johnson S G 2011 Structural anisotropy and orientation-induced Casimir repulsion in fluids Phys. Rev. A 83 52503

    [140] Basu S and Wang L 2013 Near-field radiative heat transfer between doped silicon nanowire arrays Appl. Phys. Lett. 102 053101

    [141] Liu B, Shi J, Liew K and Shen S 2014 Near-field radiative heat transfer for Si based metamaterials Opt. Commun. 314 57–65

    [142] Liu X L, Zhang R Z and Zhang Z M 2014 Near-field radiative heat transfer with doped-silicon nanostructured metamaterials Int. J. Heat Mass Transfer 73 389–98

    [143] Liu B and Shen S 2013 Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: direct numerical simulation by the Wiener chaos expansion method Phys. Rev. B 87 1214–22

    [144] Lang S, Tschikin M, Biehs S-A, Petrov A Y and Eich M 2014 Large penetration depth of near-field heat flux in hyperbolic media Appl. Phys. Lett. 104 121903

    [145] Biehs S A, Ben-Abdallah P, Rosa F S S, Joulain K and Greffet J-J 2016 Nanoscale heat flux between nanoporous materials Opt. Express 19 A1088

    [146] Liu X L, Zhang R Z and Zhang Z M 2013 Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes Appl. Phys. Lett. 103 213102

    [147] Guo Y, Cortes C L, Molesky S and Jacob Z 2012 Broadband super-Planckian thermal emission from hyperbolic metamaterials Appl. Phys. Lett. 101 131106

    [148] Biehs S-A, Tschikin M, Messina R and Ben-Abdallah P 2013 Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials Appl. Phys. Lett. 102 131106

    [149] Biehs S-A and Ben-Abdallah P 2017 Near-field heat transfer between multilayer hyperbolic metamaterials Z. Naturforsch. A 72 115–27

    [150] Song J, Cheng Q, Lu L, Li B, Zhou K, Zhang B, Luo Z and Zhou X 2020 Magnetically tunable near-field radiative heat transfer in hyperbolic metamaterials Phys. Rev. Appl. 13 024054

    [151] Grigorenko A N, Polini M and Novoselov K S 2012 Graphene plasmonics Nat. Photon. 6 749–58

    [152] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Two-dimensional material nanophotonics Nat. Photon. 8 899–907

    [153] Zhou C-L, Qu L, Zhang Y and Yi H-L 2020 Enhancement and active mediation of near-field radiative heat transfer through multiple nonreciprocal graphene surface plasmons Phys. Rev. B 102 245421

    [154] Liu X L and Zhang Z M 2015 Giant enhancement of nanoscale thermal radiation based on hyperbolic graphene plasmons Appl. Phys. Lett. 107 143114

    [155] Zhou C, Yang S-H, Zhang Y and Yi H-L 2020 Near-field electromagnetic heat transfer through nonreciprocal hyperbolic graphene plasmons Nanoscale Microscale Thermophys. Eng. 24 168–83

    [156] Yi X-J, Zhong L-Y, Wang T-B, Liu W-X, Zhang D-J, Yu T-B, Liao Q-H and Liu N-H 2019 Near-field radiative heat transfer between hyperbolic metasurfaces based on black phosphorus Eur. Phys. J. B 92 217

    [157] Liu X, Shen J and Xuan Y 2019 Near-field thermal radiation of nanopatterned black phosphorene mediated by topological transitions of phosphorene plasmons Nanoscale Microscale Thermophys. Eng. 23 188–99

    [158] Shen J, Guo S, Liu X, Liu B, Wu W and He H 2018 Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons Appl. Therm. Eng. 144 403–10

    [159] Shen J, Liu X and Xuan Y 2018 Near-field thermal radiation between nanostructures of natural anisotropic material Phys. Rev. Appl. 10 034029

    [160] Salihoglu H and Xu X 2019 Near-field radiative heat transfer enhancement using natural hyperbolic material J. Quant. Spectrosc. Radiat. Transfer 222–223 115–21

    [161] Liu X and Xuan Y 2016 Super-Planckian thermal radiation enabled by hyperbolic surface phonon polaritons Sci. China Technol. Sci. 59 1680–6

    [162] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system Nano Lett. 15 3172–80

    [163] Wu X and Fu C 2021 Near-field radiative heat transfer between uniaxial hyperbolic media: role of volume and surface phonon polaritons J. Quant. Spectrosc. Radiat. Transfer 258 107337

    [164] Wu X and Fu C 2021 Hyperbolic volume and surface phonon polaritons excited in an ultrathin hyperbolic slab: connection of dispersion and topology Nanoscale Microscale Thermophys. Eng. 25 64–71

    [165] Wu X and Fu C 2018 Manipulation of enhanced absorption with tilted hexagonal boron nitride slabs J. Quant. Spectrosc. Radiat. Transfer 209 150–5

    [166] Wu X, Fu C and Zhang Z M 2019 Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials Int. J. Heat Mass Transfer 135 1207–17

    [167] Wu X 2021 Thermal Radiative Properties of Uniaxial Anisotropic Materials and Their Manipulations (Berlin: Springer)

    [168] Wu X and Liu R 2020 Near-field radiative heat transfer between graphene covered biaxial hyperbolic materials ES Energy Environ. 10 66–72

    [169] Wu X, Fu C and Zhang Z M 2020 Near-field radiative heat transfer between two α-MoO3 biaxial crystals J. Heat Transfer 142 072802

    [170] Svetovoy V B, Zwol P and Chevrier J 2012 Plasmon enhanced near-field radiative heat transfer for graphene covered dielectrics Phys. Rev. B 85 155418

    [171] Messina R, Hugonin J-P, Greffet J-J, Marquier F, de Wilde Y, Belarouci A, Frechette L, Cordier Y and Ben-Abdallah P 2013 Tuning the electromagnetic local density of states in graphene-covered systems via strong coupling with graphene plasmons Phys. Rev. B 87 085421

    [172] Wang A, Zheng Z and Xuan Y 2016 Near-field radiative thermal control with graphene covered on different materials J. Quant. Spectrosc. Radiat. Transfer 180 117–25

    [173] Li Y, Yan H, Farmer D B, Meng X, Zhu W, Osgood R M, Heinz T F and Avouris P 2014 Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers Nano Lett. 14 1573–7

    [174] Messina R, Ben-Abdallah P, Guizal B and Antezza M 2017 Graphene-based amplification and tuning of near-field radiative heat transfer between dissimilar polar materials Phys. Rev. B 96 045402

    [175] Zhao B and Zhang Z M 2015 Strong plasmonic coupling between graphene ribbon array and metal gratings ACS Photonics 2 1611–8

    [176] Liu X, Zhang R Z and Zhang Z 2014 Near-perfect photon tunneling by hybridizing graphene plasmons and hyperbolic modes ACS Photonics 1 785–9

    [177] Zhao Q, Zhou T, Wang T, Liu W, Liu J, Yu T, Liao Q and Liu N 2017 Active control of near-field radiative heat transfer between graphene-covered metamaterials J. Phys. D: Appl. Phys. 50 145101

    [178] Dai S et al 2015 Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial Nat. Nanotechnol. 10 682–6

    [179] Brar V W, Jang M S, Sherrott M, Kim S, Lopez J J, Kim L B, Choi M and Atwater H 2014 Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures Nano Lett. 14 3876–80

    [180] Jia Y, Zhao H, Guo Q, Wang X, Wang H and Xia F 2015 Tunable plasmon–phonon polaritons in layered graphene–hexagonal boron nitride heterostructures ACS Photonics 2 907–12

    [181] Cai M, Wang S, Liu Z, Wang Y, Gao B, Han T, Liu H, Zhang H and Qiao Y 2021 Adjusting transmissivity based on grapheme–h-BN–graphene heterostructure as a tunable phonon–plasmon coupling system in mid-infrared band J. Mater. Sci. 56 1–10

    [182] Zhao B and Zhang Z M 2017 Enhanced photon tunneling by surface plasmon–phonon polaritons in graphene/hBN heterostructures J. Heat Transfer 139 022701

    [183] Zhao B, Guizal B, Zhang Z M, Fan S and Antezza M 2017 Near-field heat transfer between graphene/hBN multilayers Phys. Rev. B 95 245437

    [184] Shi K, Bao F and He S 2017 Enhanced near-field thermal radiation based on multilayer graphene-hBN heterostructures ACS Photonics 4 971–8

    [185] Liu R, Ge L, Yu H, Cui Z and Wu X 2022 Near-field radiative heat transfer via coupling graphene plasmons with different phonon polaritons in the Reststrahlen bands Eng. Sci. 18

    [186] Xu J-B, Lauger K, Moller R, Dransfeld K and Wilson I H 1994 Heat transfer between two metallic surfaces at small distances J. Appl. Phys. 76 7209–16

    [187] Kittel A, Müller-Hirsch W, Parisi J, Biehs S-A, Reddig D and Holthaus M 2005 Near-field heat transfer in a scanning thermal microscope Phys. Rev. Lett. 95 224301

    [188] Kim K et al 2015 Radiative heat transfer in the extreme near field Nature 528 387–91

    [189] Kloppstech K, Konne N, Biehs S-A, Rodriguez A W, Worbes L, Hellmann D and Kittel A 2017 Giant heat transfer in the crossover regime between conduction and radiation Nat. Commun. 8 14475

    [190] Narayanaswamy A, Shen S and Chen G 2008 Near-field radiative heat transfer between a sphere and a substrate Phys. Rev. B 78 115303

    [191] Rousseau E, Siria A, Jourdan G, Volz S, Comin F, Chevrier J and Greffet J-J 2009 Radiative heat transfer at the nanoscale Nat. Photon. 3 514–7

    [192] Shen S, Mavrokefalos A, Sambegoro P and Chen G 2012 Nanoscale thermal radiation between two gold surfaces Appl. Phys. Lett. 100 233114

    [193] Zwol P, Thiele S, Berger C, de Heer W A and Chevrier J 2012 Nanoscale radiative heat flow due to surface plasmons in graphene and doped silicon Phys. Rev. Lett. 109 264301

    [194] Song B et al 2015 Enhancement of near-field radiative heat transfer using polar dielectric thin films Nat. Nanotechnol. 10 253–8

    [195] Ottens R S, Quetschke V, Wise S, Alemi A A, Lundock R, Mueller G, Reitze D H, Tanner D B and Whiting B F 2011 Near-field radiative heat transfer between macroscopic planar surfaces Phys. Rev. Lett. 107 014301

    [196] Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T and Horak M 2012 Strong near-field enhancement of radiative heat transfer between metallic surfaces Phys. Rev. Lett. 109 224302

    [197] Feng C, Tang Z, Yu J and Sun C 2013 A MEMS device capable of measuring near-field thermal radiation between membranes Sensors 13 1998–2010

    [198] St-Gelais R, Guha B, Zhu L, Fan S and Lipson M 2014 Demonstration of strong near-field radiative heat transfer between integrated nanostructures Nano Lett. 14 6971–5

    [199] Lim M, Lee S S and Lee B J 2015 Near-field thermal radiation between doped silicon plates at nanoscale gaps Phys. Rev. B 91 195136

    [200] St-Gelais R, Zhu L, Fan S and Lipson M 2016 Near-field radiative heat transfer between parallel structures in the deep subwavelength regime Nat. Nanotechnol. 11 515–9

    [201] Song B, Thompson D, Fiorino A, Ganjeh Y, Reddy P and Meyhofer E 2016 Radiative heat conductances between dielectric and metallic parallel plates with nanoscale gaps Nat. Nanotechnol. 11 509–14

    [202] Ito K, Nishikawa K, Miura A, Toshiyoshi H and Iizuka H 2017 Dynamic modulation of radiative heat transfer beyond the blackbody limit Nano Lett. 17 4347–53

    [203] Fiorino A, Thompson D, Zhu L, Song B, Reddy P and Meyhofer E 2018 Giant enhancement in radiative heat transfer in sub-30 nm gaps of plane parallel surfaces Nano Lett. 18 3711–5

    [204] Shi K, Sun Y, Chen Z, He N, Bao F, Evans J and He S 2019 Colossal enhancement of near-field thermal radiation across hundreds of nanometers between millimeter-scale plates through surface plasmon and phonon polaritons coupling Nano Lett. 19 8082–8

    [205] DeSutter J, Tang L and Francoeur M 2019 A near-field radiative heat transfer device Nat. Nanotechnol. 14 751–5

    [206] Salihoglu H, Nam W, Traverso L, Segovia M, Venuthurumilli P K, Liu W, Wei Y, Li W and Xu X 2020 Near-field thermal radiation between two plates with sub-10 nm vacuum separation Nano Lett. 20 6091–6

    [207] Lim M, Song J, Lee S S, Lee J and Lee B J 2020 Surface-plasmon-enhanced near-field radiative heat transfer between planar surfaces with a thin-film plasmonic coupler Phys. Rev. Appl. 14 014070

    [208] Shi K, Chen Z, Xu X, Evans J and He S 2021 Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry Adv. Mater. 33 2106097

    [209] Fong K Y, Li H-K, Zhao R, Yang S, Wang Y and Zhang X 2019 Phonon heat transfer across a vacuum through quantum fluctuations Nature 576 243–7

    [210] Tschikin M, Biehs S-A, Rosa F S S and Ben-Abdallah P 2012 Radiative cooling of nanoparticles close to a surface Eur. Phys. J. B 85 233

    [211] Li B, Wang L and Casati G 2006 Negative differential thermal resistance and thermal transistor Appl. Phys. Lett. 88 143501

    [212] Wang L and Li B 2007 Thermal logic gates: computation with phonons Phys. Rev. Lett. 99 177208

    [213] Ben-Abdallah P and Biehs S A 2015 Contactless heat flux control with photonic devices AIP Adv. 5 556–1810

    [214] Ozbay E 2006 Plasmonics: merging photonics and electronics at nanoscale dimensions Science 311 189–93

    [215] Caglayan H, Hong S-H, Edwards B, Kagan C R and Engheta N 2013 Near-infrared metatronic nanocircuits by design Phys. Rev. Lett. 111 073904

    [216] Hu G et al 2020 Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers Nature 582 209–13

    [217] Ribeiro-Palau R, Zhang C, Watanabe K, Taniguchi T, Hone J and Dean C R 2018 Twistable electronics with dynamically rotatable heterostructures Science 361 690–3

    [218] Papadakis G T, Zhao B, Buddhiraju S and Fan S 2019 Gate-tunable near-field heat transfer ACS Photonics 6 709–19

    [219] Ilic O, Thomas N H, Christensen T, Sherrott M C, Soljacic M, Minnich A J, Miller O D and Atwater H A 2018 Active radiative thermal switching with graphene plasmon resonators ACS Nano 12 2474–81

    [220] Ben-Abdallah P, Belarouci A, Frechette L and Biehs S-A 2015 Heat flux splitter for near-field thermal radiation Appl. Phys. Lett. 107 143501

    [221] Ben-Abdallah P 2016 Photon thermal Hall effect Phys. Rev. Lett. 116 84301

    [222] Thomas N H, Sherrott M C, Broulliet J, Atwater H A and Minnich A J 2019 Electronic modulation of near-field radiative transfer in graphene field effect heterostructures Nano Lett. 19 3898–904

    [223] Latella I and Ben-Abdallah P 2017 Giant thermal magnetoresistance in plasmonic structures Phys. Rev. Lett. 118 173902

    [224] Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H and Soljacic M 2012 Near-field thermal radiation transfer controlled by plasmons in graphene Phys. Rev. 85 155422

    [225] Biehs S A, Rosa F S S and Ben-Abdallah P 2011 Modulation of near-field heat transfer between two gratings Appl. Phys. Lett. 98 243102

    [226] Luo M, Zhao J and Antezza M 2020 Near-field radiative heat transfer between twisted nanoparticle gratings Appl. Phys. Lett. 117 053901

    [227] Ge L, Cang Y, Gong K, Zhou L, Yu D and Luo Y 2018 Control of near-field radiative heat transfer based on anisotropic 2D materials AIP Adv. 8 085321

    [228] He M-J, Qi H, Ren Y-T, Zhao Y-J and Antezza M 2020 Magnetoplasmonic manipulation of nanoscale thermal radiation using twisted graphene gratings Int. J. Heat Mass Transfer 150 119305

    [229] He M, Qi H, Ren Y, Zhao Y and Antezza M 2020 Active control of near-field radiative heat transfer by a graphene-gratings coating-twisting method Opt. Lett. 45 2914–7

    [230] He M-J, Qi H, Ren Y-T, Zhao Y-J, Zhang Y, Shen J-D and Antezza M 2020 Radiative thermal switch driven by anisotropic black phosphorus plasmons Opt. Express 28 26922–34

    [231] Liu X, Shen J and Xuan Y 2017 Pattern-free thermal modulator via thermal radiation between van der Waals materials J. Quant. Spectrosc. Radiat. Transfer 200 100–7

    [232] Wu X and Fu C 2021 Near-field radiative modulator based on dissimilar hyperbolic materials with in-plane anisotropy Int. J. Heat Mass Transfer 168 120908

    [233] Shockley W and Queisser H J 1961 Detailed balance limit of efficiency of p-n junction solar cells J. Appl. Phys. 32 510–9

    [234] Chen M, Lin X, Dinh T H, Zheng Z, Shen J, Ma Q, Chen H, Jarillo-Herrero P and Dai S 2020 Configurable phonon polaritons in twisted α-MoO3 Nat. Mater. 19 1307–11

    [235] Vongsoasup N, Francoeur M and Hanamura K 2017 Performance analysis of near-field thermophotovoltaic system with 2D grating tungsten radiator Int. J. Heat Mass Transfer 115 326–32

    [236] Mirmoosa M S and Simovski C 2015 Micron-gap thermophotovoltaic systems enhanced by nanowires Photon. Nanostruct: Fundam. Appl. 13 20–30

    [237] Chang J-Y, Yang Y and Wang L 2015 Tungsten nanowire based hyperbolic metamaterial emitters for near-field thermophotovoltaic applications Int. J. Heat Mass Transfer 87 237–47

    [238] Yu H, Duan Y and Yang Z 2018 Selectively enhanced near-field radiative transfer between plasmonic emitter and GaSb with nanohole and nanowire periodic arrays for thermophotovoltaics Int. J. Heat Mass Transfer 123 67–74

    [239] Jiang C, Huang H and Zhou Z 2021 Enhancement in the multi-junction thermophotovoltaic system based on near-field heat transfer and hyperbolic metamaterial Sol. Energy 217 390–8

    [240] Mirmoosa M S, Biehs S A and Simovski C R 2017 Super-Planckian thermophotovoltaics without vacuum gaps Phys. Rev. Appl. 8 054202

    [241] Lim M, Song J, Kim J, Lee S S, Lee I and Lee B J 2018 Optimization of a near-field thermophotovoltaic system operating at low temperature and large vacuum gap J. Quant. Spectrosc. Radiat. Transfer 210 35–43

    [242] Wang R, Lu J and Jiang J-H 2019 Enhancing thermophotovoltaic performance using graphene-BN-InSb near-field heterostructures Phys. Rev. Appl. 12 044038

    [243] Ghanekar A, Tian Y, Liu X and Zheng Y 2019 Performance enhancement of near-field thermoradiative devices using hyperbolic metamaterials J. Photon. Energy 9 032706

    [244] Jin S, Lim M, Lee S S and Lee B J 2016 Hyperbolic metamaterial-based near-field thermophotovoltaic system for hundreds of nanometer vacuum gap Opt. Express 24 A635–49

    [245] Wang R, Lu J and Jiang J-H 2021 Moderate-temperature near-field thermophotovoltaic systems with thin-film InSb cells Chin. Phys. Lett. 38 024201

    Ruiyi Liu, Chenglong Zhou, Yong Zhang, Zheng Cui, Xiaohu Wu, Hongliang Yi. Near-field radiative heat transfer in hyperbolic materials[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 32002
    Download Citation