• Chinese Journal of Lasers
  • Vol. 46, Issue 6, 0614016 (2019)
Yinghui Yuan1、2, Xieyu Chen2, Fangrong Hu1、3, Xianming Xiong1、3, Wentao Zhang1、3, and Jiaguang Han1、2、*
Author Affiliations
  • 1 School of Electronic Engineering and Automation, Guilin University of Electronic Technology,Guilin, Guangxi 541000, China
  • 2 Center for THz Waves, College of Precision Instrument and Optoelectronics Engineering,Tianjin University, Tianjin 300072, China
  • 3 Guangxi Key Laboratory of Optoelectronics Information Processing, Guilin, Guangxi 541000, China
  • show less
    DOI: 10.3788/CJL201946.0614016 Cite this Article Set citation alerts
    Yinghui Yuan, Xieyu Chen, Fangrong Hu, Xianming Xiong, Wentao Zhang, Jiaguang Han. Terahertz Amplitude Modulator Based on Metasurface/Ion-Gel/Graphene Hybrid Structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016 Copy Citation Text show less
    References

    [1] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 1, 97-105(2007).

    [2] Zhang X C, Xu J Z. Introduction to THz wave photonics[M]. Boston, MA: Springer:(2010).

    [3] Seifert T, Jaiswal S, Martens U et al. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation[J]. Nature Photonics, 10, 483-488(2016). http://www.nature.com/nphoton/journal/vaop/ncurrent/abs/nphoton.2016.91.html

    [4] Zheludev N I. The road ahead for metamaterials[J]. Science, 328, 582-583(2010). http://adsabs.harvard.edu/abs/2010Sci...328..582Z

    [5] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 13, 139-150(2014). http://pubs.acs.org/servlet/linkout?suffix=ref12/cit12&dbid=8&doi=10.1021%2Facs.nanolett.6b01897&key=24452357

    [6] Glybovski S B, Tretyakov S A, Belov P A et al. Metasurfaces: from microwaves to visible[J]. Physics Reports, 634, 1-72(2016). http://www.sciencedirect.com/science/article/pii/S0370157316300618

    [7] Li Q, Zhang X Q, Cao W et al. An approach for mechanically tunable, dynamic terahertz bandstop filters[J]. Applied Physics A, 107, 285-291(2012). http://link.springer.com/article/10.1007/s00339-012-6861-2

    [8] Chen M, Fan F, Yang L et al. Mechanically tunable terahertz plasmonic waveguide filter[J]. Chinese Journal of Lasers, 43, 0411001(2016).

    [9] Zhang X Q, Xu N N, Qu K N et al. Electromagnetically induced absorption in a three-resonator metasurface system[J]. Scientific Reports, 5, 10737(2015). http://www.ncbi.nlm.nih.gov/pubmed/26023061

    [10] Li Q, Tian Z, Zhang X Q et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 6, 7082(2015). http://europepmc.org/articles/PMC4432643

    [11] Cong L Q, Xu N N, Zhang W L et al. Polarization control in terahertz metasurfaces with the lowest order rotational symmetry[J]. Advanced Optical Materials, 3, 1176-1183(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500100/pdf

    [12] Zhang H F, Kang M, Zhang X Q et al. Coherent control of optical spin-to-orbital angular momentum conversion in metasurface[J]. Advanced Materials, 29, 1604252(2017). http://europepmc.org/abstract/med/27900784

    [13] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [14] Kampfrath T, Perfetti L, Schapper F et al. Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite[J]. Physical Review Letters, 95, 187403(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000095000018187403000001&idtype=cvips&gifs=Yes

    [15] Li Z Q, Henriksen E A, Jiang Z et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 4, 532-535(2008). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000018000002000008000001&idtype=cvips&gifs=Yes

    [16] Kuzmenko A B, van Heumen E, Carbone F et al. . Universal optical conductance of graphite[J]. Physical Review Letters, 100, 117401(2008). http://www.ncbi.nlm.nih.gov/pubmed/18517825

    [17] Ishigami M, Chen J H, Cullen W G et al. Atomic structure of graphene on SiO2[J]. Nano Letters, 7, 1643-1648(2007). http://europepmc.org/abstract/MED/17497819

    [18] Sensale-Rodriguez B, Yan R S, Kelly M M et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature Communications, 3, 780(2012). http://europepmc.org/abstract/MED/22510685

    [19] Guo T J, Argyropoulos C. Broadband polarizers based on graphene metasurfaces[J]. Optics Letters, 41, 5592-5595(2016). http://www.ncbi.nlm.nih.gov/pubmed/27906247

    [20] Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics Express, 21, 9144-9155(2013). http://europepmc.org/abstract/med/23572003

    [21] Amin M, Farhat M. Ba cı H. An ultra-broadband multilayered graphene absorber [J]. Optics Express, 21, 29938-29948(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-24-29938

    [22] Min Woo J, Kim M S, Woong Kim H et al. Graphene based salisbury screen for terahertz absorber[J]. Applied Physics Letters, 104, 081106(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6747904

    [23] Li Q, Tian Z, Zhang X Q et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 90, 146-153(2015). http://www.sciencedirect.com/science/article/pii/S000862231500295X

    [24] Gao H, Yan F P, Tan S Y et al. Design of ultra-thin broadband terahertz metamaterial absorber based on patterned graphene[J]. Chinese Journal of Lasers, 44, 0703024(2017).

    [25] Kim T T, Oh S S, Kim H D et al. Electrical access to critical coupling of circularly polarized waves in graphene chiral metamaterials[J]. Science Advances, 3, e1701377(2017). http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621972/

    [26] Liu W G, Hu B, Huang Z D et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Research, 6, 703-708(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1807040000733y6B9E

    [27] Luxmoore I J, Gan C H, Liu P Q et al. Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide[J]. ACS Photonics, 1, 1151-1155(2014). http://pubs.acs.org/doi/abs/10.1021/ph500233s

    [28] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 19, 026222(2007). http://arxiv.org/abs/0705.3783

    [29] Chen P Y, Alù A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 5, 5855-5863(2011). http://pubs.acs.org/doi/pdf/10.1021/nn201622e

    [30] Deokar G, Avila J, Razado-Colambo I et al. Towards high quality CVD graphene growth and transfer[J]. Carbon, 89, 82-92(2015). http://www.sciencedirect.com/science/article/pii/s0008622315002134

    [31] Grischkowsky D. Keiding S, van Exter M, et al. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors[J]. Journal of the Optical Society of America B, 7, 2006-2015(1990).

    [32] Wu Y. La-O-vorakiat C, Qiu X P, et al. Graphene terahertz modulators by ionic liquid gating[J]. Advanced Materials, 27, 1874-1879(2015).

    [33] Lee K H, Kang M S, Zhang S P et al. “cut and stick” rubbery ion gels as high capacitance gate dielectrics[J]. Advanced Materials, 24, 4457-4462(2012). http://www.ncbi.nlm.nih.gov/pubmed/22760996

    [34] Yan R S, Arezoomandan S, Sensale-Rodriguez B et al. Exceptional terahertz wave modulation in graphene enhanced by frequency selective surfaces[J]. ACS Photonics, 3, 315-323(2016). http://pubs.acs.org/doi/abs/10.1021/acsphotonics.5b00639

    Yinghui Yuan, Xieyu Chen, Fangrong Hu, Xianming Xiong, Wentao Zhang, Jiaguang Han. Terahertz Amplitude Modulator Based on Metasurface/Ion-Gel/Graphene Hybrid Structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016
    Download Citation