• Acta Optica Sinica (Online)
  • Vol. 2, Issue 3, 0302001 (2025)
Jianxin Tang1,2,**, Guowei Chen1, Zhen Zhang3,*, Yihui He3..., Guo Yuan2,3 and Yanqing Li3,***|Show fewer author(s)
Author Affiliations
  • 1Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Macao999078, China
  • 2Institute of Functional Nano & Soft Materials, Soochow University, Suzhou 215123, Jiangsu , China
  • 3School of Physics and Electronic Sciences, East China Normal University, Shanghai 200062, China
  • show less
    DOI: 10.3788/AOSOL240464 Cite this Article Set citation alerts
    Jianxin Tang, Guowei Chen, Zhen Zhang, Yihui He, Guo Yuan, Yanqing Li. Research Progress on High-Efficiency Narrowband Blue OLEDs Enabled by Multiple-Boron Effect (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(3): 0302001 Copy Citation Text show less
    References

    [1] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 51, 913-915(1987).

    [2] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J]. Nature, 428, 911-918(2004).

    [3] Zhang Q S, Li B, Huang S P et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence[J]. Nature Photonics, 8, 326-332(2014).

    [4] Ha J M, Hur S H, Pathak A et al. Recent advances in organic luminescent materials with narrowband emission[J]. NPG Asia Materials, 13, 53(2021).

    [5] Ye Y, He Y W, Xiu X Y. Manipulating ultra-high definition video traffic[J]. IEEE MultiMedia, 22, 73-81(2015).

    [6] Xu Y C, Wang Q Y, Wei J B et al. Constructing organic electroluminescent material with very high color purity and efficiency based on polycyclization of the multiple resonance parent core[J]. Angewandte Chemie International Edition, 61, e202204652(2022).

    [7] Tang C W, VanSlyke S A, Chen C H. Electroluminescence of doped organic thin films[J]. Journal of Applied Physics, 65, 3610-3616(1989).

    [8] Liu T H, Iou C Y, Chen C H. Doped red organic electroluminescent devices based on a cohost emitter system[J]. Applied Physics Letters, 83, 5241-5243(2003).

    [9] Ma Y G, Zhang H Y, Shen J C et al. Electroluminescence from triplet metal: ligand charge-transfer excited state of transition metal complexes[J]. Synthetic Metals, 94, 245-248(1998).

    [10] Baldo M A, O’Brien D F, You Y et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 395, 151-154(1998).

    [11] Endo A, Ogasawara M, Takahashi A et al. Thermally activated delayed fluorescence from Sn4+-porphyrin complexes and their application to organic light emitting diodes: a novel mechanism for electroluminescence[J]. Advanced Materials, 21, 4802-4806(2009).

    [12] Uoyama H, Goushi K, Shizu K et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 492, 234-238(2012).

    [13] Teng J M, Wang Y F, Chen C F. Recent progress of narrowband TADF emitters and their applications in OLEDs[J]. Journal of Materials Chemistry C, 8, 11340-11353(2020).

    [14] Hatakeyama T, Shiren K, Nakajima K et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO-LUMO separation by the multiple resonance effect[J]. Advanced Materials, 28, 2777-2781(2016).

    [15] Huang Z Y, Xie H H, Miao J S et al. Charge transfer excited state promoted multiple resonance delayed fluorescence emitter for high-performance narrowband electroluminescence[J]. Journal of the American Chemical Society, 145, 12550-12560(2023).

    [16] Chen G W, Wang J H, Chen W C et al. Triphenylamine-functionalized multiple-resonance TADF emitters with accelerated reverse intersystem crossing and aggregation-induced emission enhancement for narrowband OLEDs[J]. Advanced Functional Materials, 33, 2211893(2023).

    [17] He Y H, Xie F M, Li H Z et al. Red-shift emission and rapid up-conversion of B, N-containing electroluminescent materials via tuning intramolecular charge transfer[J]. Materials Chemistry Frontiers, 7, 2454-2463(2023).

    [18] Yang W, Li N Q, Miao J S et al. Simple double hetero[5]helicenes realize highly efficient and narrowband circularly polarized organic light-emitting diodes[J]. CCS Chemistry, 4, 3463-3471(2022).

    [19] Cao X S, Pan K, Miao J S et al. Manipulating exciton dynamics toward simultaneous high-efficiency narrowband electroluminescence and photon upconversion by a selenium-incorporated multiresonance delayed fluorescence emitter[J]. Journal of the American Chemical Society, 144, 22976-22984(2022).

    [20] Han J M, Chen Y Y, Li N Q et al. Versatile boron-based thermally activated delayed fluorescence materials for organic light-emitting diodes[J]. Aggregate, 3, e182(2022).

    [21] Wang Q Y, Xu Y C, Yang T et al. Precise functionalization of a multiple-resonance framework: constructing narrowband organic electroluminescent materials with external quantum efficiency over 40%[J]. Advanced Materials, 35, 2205166(2023).

    [22] Cai X L, Pan Y, Li C L et al. Nitrogen-embedding strategy for short-range charge transfer excited states and efficient narrowband deep-blue organic light emitting diodes[J]. Angewandte Chemie International Edition, 63, e202408522(2024).

    [23] Liu Y, Xiao X, Huang Z M et al. Space-confined donor-acceptor strategy enables fast spin-flip of multiple resonance emitters for suppressing efficiency roll-off[J]. Angewandte Chemie International Edition, 61, e202210210(2022).

    [24] Mamada M, Hayakawa M, Ochi J et al. Organoboron-based multiple-resonance emitters: synthesis, structure-property correlations, and prospects[J]. Chemical Society Reviews, 53, 1624-1692(2024).

    [25] Li P, Li W J, Zhang Y W et al. Recent progress of thermally activated delayed fluorescent materials with narrowband red, green, and blue (RGB) emission[J]. ACS Materials Letters, 6, 1746-1768(2024).

    [26] Kim H J, Yasuda T. Narrowband emissive thermally activated delayed fluorescence materials[J]. Advanced Optical Materials, 10, 2201714(2022).

    [27] Tan W L, Yu Y, Hu D H et al. Recent progress of blue-light emitting materials for organic light-emitting diodes[J]. Chinese Journal of Luminescence, 44, 1-11(2023).

    [28] Madayanad Suresh S, Hall D, Beljonne D et al. Multiresonant thermally activated delayed fluorescence emitters based on heteroatom-doped nanographenes: recent advances and prospects for organic light-emitting diodes[J]. Advanced Functional Materials, 30, 1908677(2020).

    [29] Jin J M, Liu D H, Chen W C et al. Synergetic modulation of steric hindrance and excited state for anti-quenching and fast spin-flip multi-resonance thermally activated delayed fluorophore[J]. Angewandte Chemie International Edition, 63, e202401120(2024).

    [30] Hu Y X, Miao J S, Hua T et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off[J]. Nature Photonics, 16, 803-810(2022).

    [31] Zhang Y W, Wei J B, Zhang D D et al. Sterically wrapped multiple resonance fluorophors for suppression of concentration quenching and spectrum broadening[J]. Angewandte Chemie International Edition, 61, e202113206(2022).

    [32] Xing L J, Wang J H, Chen W C et al. Highly efficient pure-blue organic light-emitting diodes based on rationally designed heterocyclic phenophosphazinine-containing emitters[J]. Nature Communications, 15, 6175(2024).

    [33] Liu D F, Cheng D Z, Jiang D Y et al. Highly efficient asymmetric multiple resonance thermally activated delayed fluorescence emitter with EQE of 32.8% and extremely low efficiency roll-off[J]. Angewandte Chemie International Edition, 61, e202116927(2022).

    [34] Huang F, Fan X C, Cheng Y C et al. Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems[J]. Materials Horizons, 9, 2226-2232(2022).

    [35] Jiang P C, Miao J S, Cao X S et al. Quenching-resistant multiresonance TADF emitter realizes 40% external quantum efficiency in narrowband electroluminescence at high doping level[J]. Advanced Materials, 34, e2106954(2022).

    [36] Kondo Y, Yoshiura K, Kitera S et al. Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter[J]. Nature Photonics, 13, 678-682(2019).

    [37] Tanaka H, Oda S, Ricci G et al. Hypsochromic shift of multiple-resonance-induced thermally activated delayed fluorescence by oxygen atom incorporation[J]. Angewandte Chemie (International Ed), 60, 17910-17914(2021).

    [38] Park I S, Yang M L, Shibata H et al. Achieving ultimate narrowband and ultrapure blue organic light-emitting diodes based on polycyclo-heteraborin multi-resonance delayed-fluorescence emitters[J]. Advanced Materials, 34, e2107951(2022).

    [39] Naveen K R, Oh J H, Lee H S et al. Tailoring extremely narrow FWHM in hypsochromic and bathochromic shift of polycyclo-heteraborin MR-TADF materials for high-performance OLEDs[J]. Angewandte Chemie (International Ed), 62, e202306768(2023).

    [40] Naveen K R, Lee H, Seung L H et al. Modular design for constructing narrowband deep-blue multiresonant thermally activated delayed fluorescent emitters for efficient organic light emitting diodes[J]. Chemical Engineering Journal, 451, 138498(2023).

    [41] Liu G T, Sasabe H, Kumada K et al. Nonbonding/bonding molecular orbital regulation of nitrogen-boron-oxygen-embedded blue/green multiresonant TADF emitters with high efficiency and color purity[J]. Chemistry, 28, e202202289(2022).

    [42] Naveen R K, Lee H, Braveenth R et al. Deep blue diboron embedded multi-resonance thermally activated delayed fluorescence emitters for narrowband organic light emitting diodes[J]. Chemical Engineering Journal, 432, 134381(2022).

    [43] Mamada M, Aoyama A, Uchida R et al. Efficient deep-blue multiple-resonance emitters based on azepine-decorated ν-DABNA for CIEy below 0.06[J]. Advanced Materials, 36, e2402905(2024).

    [44] Huang F, Fan X C, Cheng Y C et al. Combining carbazole building blocks and ν‍-DABNA heteroatom alignment for a double boron-embedded MR-TADF emitter with improved performance[J]. Angewandte Chemie (International Ed), 62, e202306413(2023).

    [45] Zhang K Y, Wang X D, Chang Y F et al. Carbazole-decorated organoboron emitters with low-lying HOMO levels for solution-processed narrowband blue hyperfluorescence OLED devices[J]. Angewandte Chemie, 135, e202313084(2023).

    [46] Kim H S, Cheon H J, Lee D et al. Toward highly efficient deep-blue OLEDs: tailoring the multiresonance-induced TADF molecules for suppressed excimer formation and near-unity horizontal dipole ratio[J]. Science Advances, 9, eadf1388(2023).

    [47] Oda S, Kawakami B, Kawasumi R et al. Multiple resonance effect-induced sky-blue thermally activated delayed fluorescence with a narrow emission band[J]. Organic Letters, 21, 9311-9314(2019).

    [48] Knöller J A, Meng G Y, Wang X et al. Intramolecular borylation via sequential B-Mes bond cleavage for the divergent synthesis of B, N, B-doped benzo[4]helicenes[J]. Angewandte Chemie International Edition, 59, 3156-3160(2020).

    [49] Matsui K, Oda S, Yoshiura K et al. One-shot multiple borylation toward BN-doped nanographenes[J]. Journal of the American Chemical Society, 140, 1195-1198(2018).

    [50] Jin J B, Duan C B, Jiang H et al. Integrating asymmetric O-B-N unit in multi-resonance thermally activated delayed fluorescence emitters towards high-performance deep-blue organic light-emitting diodes[J]. Angewandte Chemie International Edition, 62, e202218947(2023).

    [51] Chan C Y, Madayanad Suresh S, Lee Y T et al. Two boron atoms versus one: high-performance deep-blue multi-resonance thermally activated delayed fluorescence emitters[J]. Chemical Communications, 58, 9377-9380(2022).

    [52] Oda S, Kumano W, Hama T et al. Carbazole-based DABNA analogues as highly efficient thermally activated delayed fluorescence materials for narrowband organic light-emitting diodes[J]. Angewandte Chemie (International Ed), 60, 2882-2886(2021).

    [53] Yang M L, Park I S, Yasuda T. Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics[J]. Journal of the American Chemical Society, 142, 19468-19472(2020).

    [54] Lei B W, Huang Z M, Li S T et al. Medium-ring strategy enables multiple resonance emitters with twisted geometry and fast spin-flip to suppress efficiency roll-off[J]. Angewandte Chemie (International Ed), 62, e202218405(2023).

    [55] Lv X L, Miao J S, Liu M H et al. Extending the π‍-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission[J]. Angewandte Chemie (International Ed), 61, e202201588(2022).

    [56] Nagata M, Min H, Watanabe E et al. Fused-nonacyclic multi-resonance delayed fluorescence emitter based on ladder-thiaborin exhibiting narrowband sky-blue emission with accelerated reverse intersystem crossing[J]. Angewandte Chemie International Edition, 60, 20280-20285(2021).

    [57] Wang Y Y, Ma Z W, Pu J R et al. Multiple-resonance thermally activated delayed emitters through multiple peripheral modulation to enable efficient blue OLEDs at high doping levels[J]. Aggregate, 5, e585(2024).

    [58] Xu K, Li N Q, Ye Z Y et al. High-performance deep-blue electroluminescence from multi-resonance TADF emitters with a spirofluorene-fused double boron framework[J]. Chemical Science, 15, 18076-18084(2024).

    [59] Lee D W, Hwang J, Kim H J et al. Novel V-shaped bipolar host materials for solution-processed thermally activated delayed fluorescence OLEDs[J]. ACS Applied Materials & Interfaces, 13, 49076-49084(2021).

    [60] Shi H N, Xie F M, Li H Z et al. Dual-core engineering for efficient deep-blue multiple resonance thermally activated delayed fluorescent materials[J]. Advanced Functional Materials, 2413579(2024).

    [61] Suresh S M, Zhang L, Matulaitis T et al. Judicious heteroatom doping produces high-performance deep-blue/near-UV multiresonant thermally activated delayed fluorescence OLEDs[J]. Advanced Materials, 35, 2300997(2023).

    [62] Yan Z P, Yuan L, Zhang Y et al. A chiral dual-core organoboron structure realizes dual-channel enhanced ultrapure blue emission and highly efficient circularly polarized electroluminescence[J]. Advanced Materials, 34, 2204253(2022).

    [63] Wu L, Mu X L, Liu D H et al. Regional functionalization molecular design strategy: a key to enhancing the efficiency of multi-resonance OLEDs[J]. Angewandte Chemie International Edition, 63, e202409580(2024).

    [64] Wu L, Huang Z Y, Miao J S et al. Orienting group directed cascade borylation for efficient one-shot synthesis of 1, 4-BN-doped polycyclic aromatic hydrocarbons as narrowband organic emitters[J]. Angewandte Chemie International Edition, 63, e202402020(2024).

    [65] Fan T J, Zhang Y W, Wang L et al. One-shot synthesis of B/N-doped calix[4]arene exhibiting narrowband multiple resonance fluorescence[J]. Angewandte Chemie International Edition, 61, e202213585(2022).

    [66] Wang X, Zhang Y W, Dai H Y et al. Mesityl-functionalized multi-resonance organoboron delayed fluorescent frameworks with wide-range color tunability for narrowband OLEDs[J]. Angewandte Chemie International Edition, 61, e202206916(2022).

    [67] Agou T, Matsuo K, Kawano R et al. Pentacyclic ladder-heteraborin emitters exhibiting high-efficiency blue thermally activated delayed fluorescence with an ultrashort emission lifetime[J]. ACS Materials Letters, 2, 28-34(2020).

    [68] Meng G Y, Dai H Y, Zhou J P et al. Wide-range color-tunable polycyclo-heteraborin multi-resonance emitters containing B-N covalent bonds[J]. Chemical Science, 14, 979-986(2022).

    [69] Wang X, Wang L, Meng G Y et al. Improving the stability and color purity of a BT.2020 blue multiresonance emitter by alleviating hydrogen repulsion[J]. Science Advances, 9, eadh1434(2023).

    [70] Oda S, Kawakami B, Horiuchi M et al. Ultra-narrowband blue multi-resonance thermally activated delayed fluorescence materials[J]. Advanced Science, 10, e2205070(2022).

    [71] Oda S, Kawakami B, Yamasaki Y et al. One-shot synthesis of expanded heterohelicene exhibiting narrowband thermally activated delayed fluorescence[J]. Journal of the American Chemical Society, 144, 106-112(2022).

    [72] Ochi J, Yamasaki Y, Tanaka K et al. Highly efficient multi-resonance thermally activated delayed fluorescence material toward a BT.2020 deep-blue emitter[J]. Nature Communications, 15, 2361(2024).

    [73] Weerasinghe R W, Madayanad Suresh S, Hall D et al. A boron, nitrogen, and oxygen doped π-extended helical pure blue multiresonant thermally activated delayed fluorescent emitter for organic light emitting diodes that shows fast kRISC without the use of heavy atoms[J]. Advanced Materials, 36, e2402289(2024).

    [74] Suresh S M, Duda E, Hall D et al. A deep blue B, N-doped heptacene emitter that shows both thermally activated delayed fluorescence and delayed fluorescence by triplet-triplet annihilation[J]. Journal of the American Chemical Society, 142, 6588-6599(2020).

    [75] Stavrou K, Madayanad Suresh S, Hall D et al. Emission and absorption tuning in TADF B, N-doped heptacenes: toward ideal-blue hyperfluorescent OLEDs[J]. Advanced Optical Materials, 10, 2200688(2022).

    [76] Hua T, Cao X S, Miao J S et al. Deep-blue organic light-emitting diodes for ultrahigh-definition displays[J]. Nature Photonics, 18, 1161-1169(2024).

    [77] Sano Y, Shintani T, Hayakawa M et al. One-shot construction of BN-embedded heptadecacene framework exhibiting ultra-narrowband green thermally activated delayed fluorescence[J]. Journal of the American Chemical Society, 145, 11504-11511(2023).

    [78] Yuan L, Xu J W, Yan Z P et al. Tetraborated intrinsically axial chiral multi-resonance thermally activated delayed fluorescence materials[J]. Angewandte Chemie International Edition, 63, e202407277(2024).

    Jianxin Tang, Guowei Chen, Zhen Zhang, Yihui He, Guo Yuan, Yanqing Li. Research Progress on High-Efficiency Narrowband Blue OLEDs Enabled by Multiple-Boron Effect (Invited)[J]. Acta Optica Sinica (Online), 2025, 2(3): 0302001
    Download Citation