• Matter and Radiation at Extremes
  • Vol. 9, Issue 3, 037401 (2024)
Dong Wang1, Ningning Wang2, Caoshun Zhang1, Chunsheng Xia1..., Weicheng Guo1, Xia Yin1, Kejun Bu1, Takeshi Nakagawa1, Jianbo Zhang1, Federico Gorelli1, Philip Dalladay-Simpson1, Thomas Meier1, Xujie Lü1, Liling Sun1,2, Jinguang Cheng2, Qiaoshi Zeng1, Yang Ding1,a) and Ho-kwang Mao1,3|Show fewer author(s)
Author Affiliations
  • 1Center for High-Pressure Science and Technology Advanced Research, Beijing 100094, China
  • 2Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 3Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments (MFree), Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai 201203, China
  • show less
    DOI: 10.1063/5.0183701 Cite this Article
    Dong Wang, Ningning Wang, Caoshun Zhang, Chunsheng Xia, Weicheng Guo, Xia Yin, Kejun Bu, Takeshi Nakagawa, Jianbo Zhang, Federico Gorelli, Philip Dalladay-Simpson, Thomas Meier, Xujie Lü, Liling Sun, Jinguang Cheng, Qiaoshi Zeng, Yang Ding, Ho-kwang Mao. Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides[J]. Matter and Radiation at Extremes, 2024, 9(3): 037401 Copy Citation Text show less
    References

    [1] H. K.Onnes. The superconductivity of mercury. Commun. Phys. Lab. Univ. Leiden, 122, 124(1911).

    [2] F.Chen, L.Gao, R.Meng, Q.Xiong, Y.Xueet?al.. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m= 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50, 4260(1994).

    [3] M.Cantoni, J.Guo, H.Ott, A.Schilling. Superconductivity above 130 K in the Hg–Ba–Ca–Cu–O system. Nature, 363, 56-58(1993).

    [4] M. I.Eremets, I.Errea, C. J.Pickard. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys., 11, 57-76(2020).

    [5] A.Drozdov, M.Eremets, V.Ksenofontov, S. I.Shylin, I.Troyan. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [6] M.Ahart, M.Baldini, Z. M.Geballe, A. K.Mishra, M.Somayazuluet?al.. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [7] Y.Ding, H.-K.Mao, D.Wang. Future study of dense superconducting hydrides at high pressure. Materials, 14, 7563(2021).

    [8] J.Bi, Y.Nakamoto, K.Shimizu, P.Zhang, B.Zou et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H9. Nat. Commun, 13, 5952(2022).

    [9] L.Ma, K.Wang, Y.Wang, Y.Xie, X.Yanget?al.. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa. Phys. Rev. Lett., 128, 167001(2022).

    [10] S. P.Besedin, A. P.Drozdov, P.Kong, M. A.Kuzovnikov, V. S.Minkovet?al.. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun., 12, 5075(2021).

    [11] N.Dasenbrock-Gammon, D.Durkee, R.McBride, H.Pasan, E.Snideret?al.. Retracted article: Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 615, 244-250(2023).

    [12] N.Dasenbrock-Gammon, D.Durkee, R.McBride, H.Pasan, E.Snideret?al.. Retraction note: Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature, 624, 460(2023).

    [13] M.Ahart, R. J.Hemley, A. C.Mark, N. P.Salke. Evidence for near ambient superconductivity in the Lu-N-H system. arXiv:2306.06301(2023).

    [14] Y.Peng, Q.Qiu, P.Shan, N.Wang, X.Zhenget?al.. Pressure-induced color change in the lutetium dihydride LuH2. Chin. Phys. Lett., 40, 046101(2023).

    [15] S.Huang, Q.Li, Z.Liu, X.Ming, Y.Zhang et al. Pressure-induced color change arising from transformation between intra-and inter-band transitions in LuH2±xNy. Sci. China Phys. Mech. Astron, 67, 227411(2024).

    [16] Q.Li, X.Ming, Y.-J.Zhang, B.Zheng, X.Zhuet?al.. Pressure induced color change and evolution of metallic behavior in nitrogen-doped lutetium hydride. Sci. China Phys., Mech. Astron., 66, 287411(2023).

    [17] W.Lu, R.Lv, D.Shao, Y.Sun, W.Tu. Physical origin of color changes in lutetium hydride under pressure. Chin. Phys. Lett., 40, 117401(2023).

    [18] C.Wang, X.Xing, J.Xu, L.Yu, C.Zhanget?al.. Observation of non-superconducting phase changes in nitrogen doped lutetium hydrides. Nat. Commun., 14, 5991(2023).

    [19] C.He, Q.Li, X.Ming, Y.-J.Zhang, X.Zhuet?al.. Absence of near-ambient superconductivity in LuH2±xNy. Nature, 620, 72(2023).

    [20] Y.Quan, X.Tao, A.Yang, S.Yang, P.Zhang. Leading components and pressure-induced color changes in N-doped lutetium hydride. Sci. Bull., 68, 1372-1378(2023).

    [21] L. J.Conway, S.-W.Kim, B.Monserrat, G. L.Pascut, C. J.Pickard. Microscopic theory of colour in lutetium hydride(2023).

    [22] Y.Li, P.Shan, N.Wang, Y.Xu, X.Zhaoet?al.. Pressure tuning of optical reflectivity in LuH2. Sci. Bull., 68, 883-886(2023).

    [23] ?.Dangi?, I.Errea, Y.-W.Fang, P.Garcia-Goiricelaya, J.Iba?ez-Azpiroz. Ab initio study of the structural, vibrational, and optical properties of potential parent structures of nitrogen-doped lutetium hydride. Phys. Rev. B, 108, 064517(2023).

    [24] I. A.Nekrasov, N. S.Pavlov, K. S.Pervakov, V. M.Pudalov, I. R.Shein. Anatomy of the band structure of the newest apparent near-ambient superconductor LuH3-xNx(2023).

    [25] A.Angeletti, P. M.Forcella, C.Franchini, L.Ranalli, C.Trescaet?al.. Evidence of molecular hydrogen in the N-doped LuH3 system: A possible path to superconductivity?(2023).

    [26] D.Duan, Z.Huo, Q.Jiang, T.Ma, Z.Zhanget?al.. First-principles study on the superconductivity of N-doped fcc-LuH3(2023).

    [27] A.Denchfield, R. J.Hemley, H.Park. Novel electronic structure of nitrogen-doped lutetium hydrides(2023).

    [28] L. J.Conway, A.Cucciari, S.Di Cataldo, P. P.Ferreira, F.Giannessiet?al.. Search for ambient superconductivity in the Lu-NH system(2023).

    [29] M.Aichhorn, P. P.Ferreira, C.Heil, R.Lucrezi. Temperature and quantum anharmonic lattice effects in lutetium trihydride: Stability and superconductivity(2023).

    [30] S.Gallego-Parra, Y.Gao, G.Garbarino, O.Moulding, P.Toulemondeet?al.. Pressure-induced formation of cubic lutetium hydrides derived from trigonal LuH3. Phys. Rev. B, 108, 214505(2023).

    [31] T.Palasyuk, M.Tkacz. Pressure induced phase transformation of REH3. J. Alloys Compd., 446-447, 593-597(2007).

    [32] J.Hirsch. Enormous variation in homogeneity and other anomalous features of room temperature superconductor samples: A comment on Nature 615, 244 (2023). J. Supercond. Novel Magn., 36, 1489(2023).

    [33] Y.Ding, F.Lan, D.Peng, Z.Xing, Q.Zenget?al.. The near-room-temperature upsurge of electrical resistivity in Lu-H-N is not superconductivity, but a metal-to-poor-conductor transition. Matter Radiat. Extremes, 8, 058401(2023).

    [34] S.Cai, J.Guo, H.Shu, P.Wang, L.Yanget?al.. No evidence of superconductivity in a compressed sample prepared from lutetium foil and H2/N2 gas mixture. Matter Radiat. Extremes, 8, 048001(2023).

    [35] J.Hou, Z.Liu, T.Lu, P.Shan, N.Wanget?al.. Percolation-induced resistivity drop in lutetium dihydride with controllable electrical conductivity over six orders of magnitude. Sci. China Phys., Mech. Astron., 66, 297412(2023).

    [36] X.-J.Chen, Y.Ding, B.Li, H.-K.Mao, L.Wang. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).

    [37] J.Bi, R.Cai, P.Li, G.Su, S.Zhanget?al.. Transformation of hexagonal Lu to cubic LuH2+x single-crystalline films(2023).

    [38] A. F.Andreev. The thermal conductivity of the intermediate state in superconductors, 19, 1228-1231(1964).

    [39] Z.-Y.Cao, S.Choi, H.Jang, J.Kim, S.Kimet?al.. Spectroscopic evidence for the superconductivity of elemental metal Y under pressure. NPG Asia Mater., 15, 5(2023).

    [40] J. N.Munday, J. B.Murray, T. C.Narayan, K. J.Palm. Dynamic optical properties of metal hydrides. ACS Photonics, 5, 4677-4686(2018).

    [41] V.Anisimov, K.Ng, T.Rice, F.Zhang. Electronic structure of lanthanum hydrides with switchable optical properties. Phys. Rev. Lett., 78, 1311(1997).

    [42] R.Griessen, E. S.Kooij, A.Van Gogh. Isotope effects in switchable metal-hydride mirrors. Phys. Rev. Lett., 83, 4614(1999).

    [43] V.Anisimov, K.Ng, T.Rice, F.Zhang. Theory for metal hydrides with switchable optical properties. Phys. Rev. B, 59, 5398(1999).

    [44] A.Borgschulte, A.Remhof. Thin-film metal hydrides. Chemphyschem, 9, 2440-2455(2008).

    [45] F.Den Broeder, J.Huiberts, M.Kremers, D.Nagengast, S.Van der Molenet?al.. Visualization of hydrogen migration in solids using switchable mirrors. Nature, 394, 656-658(1998).

    [46] J.Dekker, R.Griessen, J. N.Huiberts, J.Rector, R.Wijngaardenet?al.. Yttrium and lanthanum hydride films with switchable optical properties. Nature, 380, 231-234(1996).

    Dong Wang, Ningning Wang, Caoshun Zhang, Chunsheng Xia, Weicheng Guo, Xia Yin, Kejun Bu, Takeshi Nakagawa, Jianbo Zhang, Federico Gorelli, Philip Dalladay-Simpson, Thomas Meier, Xujie Lü, Liling Sun, Jinguang Cheng, Qiaoshi Zeng, Yang Ding, Ho-kwang Mao. Unveiling a novel metal-to-metal transition in LuH2: Critically challenging superconductivity claims in lutetium hydrides[J]. Matter and Radiation at Extremes, 2024, 9(3): 037401
    Download Citation