• Acta Photonica Sinica
  • Vol. 48, Issue 9, 926001 (2019)
GAO Kui*, SONG Wuzhou, ZHU Chenjun, and XIA Mengrou
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20194809.0926001 Cite this Article
    GAO Kui, SONG Wuzhou, ZHU Chenjun, XIA Mengrou. Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation[J]. Acta Photonica Sinica, 2019, 48(9): 926001 Copy Citation Text show less
    References

    [1] ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156159.

    [2] HU Chaohui, WANG Jia, LIANG Jinwen. Development of farfield optical tweezers and nearfield optical tweezers[J]. Optical Technique, 2003, 29(3): 266269

    [3] LIU Binghui, YANG Lijun, WANG Yang, et al. Nanomanipulation of nearfield optical tweezers using a fiber probe[J]. Acta Photonica Sinica, 2011, 40(3): 363369.

    [4] DOU Xiujie, MIN Changjun, ZHANG Yuquan, et al. Surface plasmon polaritons optical tweezers technology[J]. Acta Optica Sinica, 2016, 36(10): 297318.

    [5] LUO Daobin, HAN Xiange, DUAN Lujie. Study of optical properties of au nadospheres in the ambient medium with temperature changing[J]. Acta Photonica Sinica, 2016, 46(6): 0616008.

    [6] SCHULLER J A, ZIA R, TAUBNER T, et al. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles[J]. Physical Review Letters, 2007, 99(10): 107401.

    [7] BRONSTRUP G, JAHR N, LEITERER C, et al. Optical properties of individual silicon nanowires for photonic devices[J]. Acs Nano, 2010, 4(12): 71137122.

    [8] EVLYUKHIN A B, REINHARDT C, SEIDEL A, et al. Optical response features of Sinanoparticle arrays[J]. Physical Review B, 2010, 82(4): 21812188.

    [9] GARCIAETXARRI A, et al. Strong magnetic response of submicron silicon particles in the infrared[J]. Optics Express, 2011, 19(6): 48154826.

    [10] JIE Yaming. The coupling among different light scattering modes of a system of nanoparticles[D]. Hefei: University of Science and Technology of China, 2017.

    [11] KUZNETSOV A I , MIROSHNICHENKO A E , BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): 24722472.

    [12] ANNE V D H M , JORIK V D G , BRENNY B J M , et al. Controlling magnetic and electric dipole modes in hollow silicon nanocylinders[J]. Optics Express, 2016, 24(3): 20472064.

    [13] STAUDE I , MIROSHNICHENKO A E , DECKER M, et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks[J]. ACS Nano, 2013, 7(9): 78247832.

    [14] GENOV D A , SARYCHEV A K , SHALAEV V M, et al. Resonant field enhancements from metal nanoparticle arrays[J]. Nano Letters, 2004, 4(1): 153158.

    [15] FAN J A , WU C , BAO K, et al. Selfassembled plasmonic nanoparticle clusters[J]. Science, 2010, 328(5982): 11351138.

    [16] JAIN P K , HUANG W , ELSAYED M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation[J]. Nano Letters, 2007, 7(7): 20802088.

    [17] ZHANG Weichun. Research on the photothermal properties of metal nanoparticles[D]. Hangzhou: Zhejiang University, 2014.

    GAO Kui, SONG Wuzhou, ZHU Chenjun, XIA Mengrou. Design of Siliconbased Nanooptical Tweezers Based on Finite Element Simulation[J]. Acta Photonica Sinica, 2019, 48(9): 926001
    Download Citation