• Electronics Optics & Control
  • Vol. 26, Issue 9, 73 (2019)
ZHU Hairong1 and LI Qi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1671-637x.2019.09.016 Cite this Article
    ZHU Hairong, LI Qi. Genetic Algorithm Based Friction Modeling and Control of Electro-Optical Tracking System[J]. Electronics Optics & Control, 2019, 26(9): 73 Copy Citation Text show less
    References

    [1] MASTEN M K. Inertially stabilized platforms for optical ima- ging systems[J]. IEEE Control Systems Magazine, 2008, 28(1): 47-64.

    [2] HILKERT J M. Inertially stabilized platform technology concepts and principles[J]. IEEE Control Systems Magazine, 2008, 28(1): 26-46.

    [3] YAO J Y, JIAO Z X, MA D W.RISE-based precision motion control of DC motors with continuous friction compensation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7067-7075.

    [4] HUR, K Z, RˇEZ, C M. Image-based pointing and tracking for inertially stabilized airborne camera platform [J]. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1146-1159.

    [7] HUANG S J, CHIU C M. Optimal LuGre friction model identification based on genetic algorithm and sliding mode control of a piezoelectric-actuating table[J]. Transactions of the Institute of Measurement & Control, 2009, 31(2): 181-203.

    [8] LU L, YAO B, WANG Q F, et al. Adaptive robust control of linear motors with dynamic friction compensation using modified LuGre model[J]. Automatica, 2009, 45(12): 2890-2896.

    [10] LI S H, LIU Z H. Adaptive speed control for permanent magnet synchronous motor system with variations of load inertia[J]. IEEE Transactions on Industrial Electronics , 2009, 56(8): 3050-3059.

    [11] TSAI M C, CHIU I F, CHENG M Y. Design and implementation of command and friction feedforward control for CNC motion controllers [J]. IEE Proceedings-Control Theory and Applications, 2004, 151(1): 13-20.

    [13] LI Z P, CHEN J, ZHANG G Z, et al. Adaptive robust control of servo mechanisms with compensation for nonlinearly parameterized dynamic friction[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1): 194-202.

    [14] WANG Y F, WANG D H, CHAI T Y. Extraction and adaptation of fuzzy rules for friction modeling and control compensation[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(4): 682-693.

    [17] NA J, CHEN Q, REN X M, et al. Adaptive prescribed performance motion control of servo mechanisms with friction compensation[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 486-494.

    [18] CHOU C H, CHENG C C. A decentralized model reference adaptive variable structure controller for large-scale time-varying delay systems[J]. IEEE Transactions on Automatic Control, 2003, 48(7): 1213-1217.

    [19] GU W, ZHANG Y, LI S H. Research on friction compensation for PMSM servo systems[C]//Chinese Control and Decision Conference, 2016: 6735-6740.

    [20] MARTON L, LANTOS B. Modelingidentificationand compensation of stick-slip friction[J].IEEE Transactions on Industrial Electronics, 2007, 54(1): 511-521.

    [21] YOON J Y, TRUMPER D L. Friction modelingidentification and compensation based on friction hysteresis and Dahl resonance[J]. Mechatronics, 2014, 24(6): 734-741.

    [22] LIU D P. Research on the parameter identification of friction model for servo systems based on genetic algorithms [C]//International Conference on Machine Learning and Cybernetics, 2005: 1116-1120.

    CLP Journals

    [1] YU Dalei, HAN Qiang, GAO Yang, WU Jiaxin. Design of an Integrated Simulation and Verification System of FC Network on Integrated Core Processing Platform[J]. Electronics Optics & Control, 2021, 28(4): 92

    ZHU Hairong, LI Qi. Genetic Algorithm Based Friction Modeling and Control of Electro-Optical Tracking System[J]. Electronics Optics & Control, 2019, 26(9): 73
    Download Citation