• Photonics Research
  • Vol. 12, Issue 9, 1927 (2024)
Xiaoyun Hu1,†, Jianfang Yang1,†, Yufei Tu2,4, Zhen Su1..., Fei Zhu3, Qingqing Guan1 and Zhiwei Ma3,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China
  • 2School of Telecommunications and Intelligent Manufacturing, Sias University, Xinzheng 451150, China
  • 3CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • 4e-mail: yufei.t@gmail.com
  • show less
    DOI: 10.1364/PRJ.525231 Cite this Article Set citation alerts
    Xiaoyun Hu, Jianfang Yang, Yufei Tu, Zhen Su, Fei Zhu, Qingqing Guan, Zhiwei Ma, "Manipulating exciton confinement for stable and efficient flexible quantum dot light-emitting diodes," Photonics Res. 12, 1927 (2024) Copy Citation Text show less
    References

    [1] Z. Zhang, W. Wang, Y. Jiang. High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 603, 624-630(2022).

    [2] Q. Lin, Y. Zhu, Y. Wang. Flexible quantum dot light-emitting device for emerging multifunctional and smart applications. Adv. Mater., 35, 2210385(2023).

    [3] M. K. Choi, J. Yang, T. Hyeon. Flexible quantum dot light-emitting diodes for next-generation displays. NPJ Flex. Electron., 2, 10(2018).

    [4] J. Kim, H. J. Shim, J. Yang. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater., 29, 1700217(2017).

    [5] F. Navarro-Pardo, H. Zhao, Z. M. Wang. Structure/property relations in “giant” semiconductor nanocrystals: opportunities in photonics and electronics. Acc. Chem. Res., 51, 609-618(2018).

    [6] J. Lim, Y. S. Park, K. Wu. Droop-free colloidal quantum dot light-emitting diodes. Nano Lett., 18, 6645-6653(2018).

    [7] H. Van Avermaet, P. Schiettecatte, S. Hinz. Full-spectrum InP-based quantum dots with near-unity photoluminescence quantum efficiency. ACS Nano, 16, 9701-9712(2022).

    [8] F. P. Garcia de Arquer, D. V. Talapin, V. I. Klimov. Semiconductor quantum dots: technological progress and future challenges. Science, 373, eaaz8541(2021).

    [9] S. Rhee, J. H. Chang, D. Hahm. Tailoring the electronic landscape of quantum dot light-emitting diodes for high brightness and stable operation. ACS Nano, 14, 17496-17504(2020).

    [10] D. W. Shin, Y. H. Suh, S. Lee. Waterproof flexible InP@ZnSeS quantum dot light-emitting diode. Adv. Opt. Mater., 8, 1901362(2020).

    [11] H. Zhang, J. A. Rogers. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms. Adv. Opt. Mater., 7, 1800936(2019).

    [12] H. B. Shen, Q. Gao, Y. B. Zhang. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat. Photonics, 13, 192-198(2019).

    [13] Y. X. Yang, Y. Zheng, W. R. Cao. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics, 9, 259-266(2015).

    [14] D. Chen, L. Ma, Y. Chen. Electrochemically stable ligands of ZnO electron-transporting layers for quantum-dot light-emitting diodes. Nano Lett., 23, 1061-1067(2023).

    [15] D. Chen, D. Chen, X. Dai. Shelf-stable quantum-dot light-emitting diodes with high operational performance. Adv. Mater., 32, 2006178(2020).

    [16] Z. Liao, K. Mallem, M. F. Prodanov. Ultralow roll-off quantum dot light-emitting diodes using engineered carrier injection layer. Adv. Mater., 35, 2303950(2023).

    [17] Z. Ma, Z. Sun, H. Yang. Interface-mediation-enabled high-performance near-infrared AgAuSe quantum dot light-emitting diodes. J. Am. Chem. Soc., 145, 24972-24980(2023).

    [18] Y. Z. Deng, F. Peng, Y. Lu. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photonics, 16, 505-513(2022).

    [19] H. Y. Xu, J. J. Song, P. H. Zhou. Dipole-dipole-interaction-assisted self-assembly of quantum dots for highly efficient light-emitting diodes. Nat. Photonics, 18, 186-191(2024).

    [20] W. Zhang, B. Li, C. Chang. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun., 15, 783(2024).

    [21] T. Lee, B. J. Kim, H. Lee. Bright and stable quantum dot light-emitting diodes. Adv. Mater., 34, 2106276(2022).

    [22] K. Ding, Y. Fang, S. Dong. 24.1% external quantum efficiency of flexible quantum dot light-emitting diodes by light extraction of silver nanowire transparent electrodes. Adv. Opt. Mater., 6, 1800347(2018).

    [23] W. Jiang, S. Lee, K. Zhao. Flexible and transparent electrode of hybrid Ti3C2TX MXene-silver nanowires for high-performance quantum dot light-emitting diodes. ACS Nano, 16, 9203-9213(2022).

    [24] Q. Su, H. Zhang, S. M. Chen. Flexible and tandem quantum-dot light-emitting diodes with individually addressable red/green/blue emission. NPJ Flex. Electron., 5, 8(2021).

    [25] H. W. Yu, H. Zhu, M. X. Xu. High-efficiency, large-area, flexible top-emitting quantum-dot light-emitting diode. ACS Photon., 10, 2192-2200(2022).

    [26] Y. Lee, D. S. Kim, S. W. Jin. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J., 427, 130858(2022).

    [27] X. Dai, Z. Zhang, Y. Jin. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature, 515, 96-99(2014).

    [28] X. Chen, X. Lin, L. Zhou. Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling. Nat. Commun., 14, 284(2023).

    [29] G. S. Selopal, H. Zhao, X. Tong. Highly stable colloidal “giant” quantum dots sensitized solar cells. Adv. Funct. Mater., 27, 1701468(2017).

    [30] H. Shen, Q. Lin, W. Cao. Efficient and long-lifetime full-color light-emitting diodes using high luminescence quantum yield thick-shell quantum dots. Nanoscale, 9, 13583-13591(2017).

    [31] F. Garcia-Santamaria, Y. Chen, J. Vela. Suppressed auger recombination in “giant” nanocrystals boosts optical gain performance. Nano Lett., 9, 3482-3488(2009).

    [32] G. S. Selopal, H. G. Zhao, Z. M. M. Wang. Core/shell quantum dots solar cells. Adv. Funct. Mater., 30, 1908762(2020).

    [33] Y. H. Won, O. Cho, T. Kim. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature, 575, 634-638(2019).

    [34] S. Kim, J. A. Kim, T. Kim. Efficient blue-light-emitting Cd-free colloidal quantum well and its application in electroluminescent devices. Chem. Mater., 32, 5200-5207(2020).

    [35] D. Kim, Y. Fu, S. Kim. Polyethylenimine ethoxylated-mediated all-solution-processed high-performance flexible inverted quantum dot-light-emitting device. ACS Nano, 11, 1982-1990(2017).

    [36] S. Kim, S. H. Im, S. W. Kim. Performance of light-emitting-diode based on quantum dots. Nanoscale, 5, 5205-5214(2013).

    [37] X. Jin, W. Chen, X. Li. Thick-shell CdZnSe/ZnSe/ZnS quantum dots for bright white light-emitting diodes. J. Lumin., 229, 117670(2021).

    [38] X. Jin, K. Xie, T. Zhang. Cation exchange assisted synthesis of ZnCdSe/ZnSe quantum dots with narrow emission line widths and near-unity photoluminescence quantum yields. Chem. Commun., 56, 6130-6133(2020).

    [39] W. Cao, C. Xiang, Y. Yang. Highly stable QLEDs with improved hole injection via quantum dot structure tailoring. Nat. Commun., 9, 2608(2018).

    [40] Y. Jiang, M. Cui, S. Li. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun., 12, 336(2021).

    [41] Y. Ji, Q. Zhong, M. Yu. Amphoteric chelating ultrasmall colloids for FAPbI3 nanodomains enable efficient near-infrared light-emitting diodes. ACS Nano, 18, 8157-8167(2024).

    [42] H. Tan, A. Jain, O. Voznyy. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355, 722-726(2017).

    [43] Z. W. Ma, J. X. Hu, L. P. Tang. Taming quantum dots’ nucleation and growth enables stable and efficient blue-light-emitting devices. Photon. Res., 10, 2359-2365(2022).

    [44] P. Yu, S. Cao, Y. Shan. Highly efficient green InP-based quantum dot light-emitting diodes regulated by inner alloyed shell component. Light Sci. Appl., 11, 162(2022).

    [45] Y. Jiang, C. Sun, J. Xu. Synthesis-on-substrate of quantum dot solids. Nature, 612, 679-684(2022).

    [46] J. Lim, M. Park, W. K. Bae. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots. ACS Nano, 7, 9019-9026(2013).

    [47] P. Shen, X. Li, F. Cao. Highly efficient, all-solution-processed, flexible white quantum dot light-emitting diodes. J. Mater. Chem. C, 6, 9642-9648(2018).

    [48] C. Xiang, L. Wu, Z. Lu. High efficiency and stability of ink-jet printed quantum dot light emitting diodes. Nat. Commun., 11, 1646(2020).

    [49] Y. Jiang, C. Qin, M. Cui. Spectra stable blue perovskite light-emitting diodes. Nat. Commun., 10, 1868(2019).

    [50] J. Lim, B. G. Jeong, M. Park. Influence of shell thickness on the performance of light-emitting devices based on CdSe/Zn1-XCdXS core/shell heterostructured quantum dots. Adv. Mater., 26, 8034-8040(2014).

    [51] Z. W. Ma, L. P. Tang, B. B. Lyu. Highly efficient full color light-emitting diodes based on quantum dots surface passivation engineering. Org. Electron., 70, 140-148(2019).

    [52] L. Chen, D. Li, A. Wang. Negative corona discharge strategy for efficient quantum dot light-emitting diodes. Opt. Lett., 49, 3392-3395(2024).

    [53] C. G. Van de Walle, J. Neugebauer. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature, 423, 626-628(2003).

    [54] S. Adachi. Handbook on Physical Properties of Semiconductors, 3(2004).

    Xiaoyun Hu, Jianfang Yang, Yufei Tu, Zhen Su, Fei Zhu, Qingqing Guan, Zhiwei Ma, "Manipulating exciton confinement for stable and efficient flexible quantum dot light-emitting diodes," Photonics Res. 12, 1927 (2024)
    Download Citation