[1] TANDE A J, PATEL R. Prosthetic joint infection[J]. Clin Microbiol Rev, 2014, 27(2): 302-345.
[2] SOBOLEV A, VALKOV A, KOSSENKO A, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39534-39544.
[3] TSIKOPOULOS K, MERONI G, KALOUDIS P, et al. Is nanomaterial- and vancomycin-loaded polymer coating effective at preventing methicillin-resistant Staphylococcus aureus growth on titanium diskS An in vitro study[J]. Int Orthop, 2023, 47(6): 1415-1422.
[4] AMEH T, SAYES C M. The potential exposure and hazards of copper nanoparticles: A review[J]. Environ Toxicol Pharmacol, 2019, 71: 103220.
[5] OLSEN I. Biofilm-specific antibiotic tolerance and resistance[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 877-886.
[6] YU S Z, LI Z H, HAN L W, et al. Biocompatible MgO film on titanium substrate prepared by sol?gel method[J]. Rare Met Mater Eng, 2018, 47(9): 2663-2667.
[7] HICKEY D J, MUTHUSAMY D, WEBSTER T J. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications[J]. J Biomed Mater Res A, 2017, 105(11): 3136-3147.
[8] NYGREN H, CHAUDHRY M, GUSTAFSSON S, et al. Increase of compact bone thickness in rat tibia after implanting MgO into the bone marrow cavity[J]. J Funct Biomater, 2014, 5(3): 158-166.
[9] JANNING C, WILLBOLD E, VOGT C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling[J]. Acta Biomater, 2010, 6(5): 1861-1868.
[10] PENG W Z, REN S S, ZHANG Y B, et al. MgO nanoparticles- incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428.
[11] ZHU Y, TANG Y F, RUAN Z, et al. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species[J]. J Biomed Mater Res, 2021, 109(11): 2369-2380.
[12] WANG Y, WU Z Y, WANG T, et al. Antibacterial and physical properties of resin cements containing MgO nanoparticles[J]. J Mech Behav Biomed Mater, 2023, 142: 105815.
[13] OKAMOTO K, KUDO D, PHUONG D N D, et al. Magnesium hydroxide nanoparticles inhibit the biofilm formation of cariogenic microorganisms[J]. Nanomaterials, 2023, 13(5): 864.
[14] CHO N, LEE B, CHOI S, et al. Brucite shows antibacterial activity via establishment of alkaline conditions[J]. RSC Adv, 2021, 11(29): 18003-18008.
[15] GURRAPPA I, BINDER L. Electrodeposition of nanostructured coatings and their characterization?A review[J]. Sci Technol Adv Mater, 2008, 9(4): 043001.
[17] DONG Ziyan, DAI Hui, MA Shihong, et al. Drug Stand China, 2014, 15(2): 120-121.
[18] PAN X H, WANG Y H, CHEN Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)?[J]. ACS Appl Mater Interfaces, 2013, 5(3): 1137-1142.
[19] NAKAMURA Y, OKITA K, KUDO D, et al. Magnesium hydroxide nanoparticles kill exponentially growing and persister Escherichia coli cells by causing physical damage[J]. Nanomaterials, 2021, 11(6): 1584.
[20] MUNIZ DIAZ R, CARDOSO-AVILA P E, PéREZ TAVARES J A, et al. Two-step triethylamine-based synthesis of MgO nanoparticles and their antibacterial effect against pathogenic bacteria[J]. Nanomaterials, 2021, 11(2): 410.
[21] TAN J, LIU Z X, WANG D H, et al. A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration[J]. Biomater Sci, 2020, 8(7): 1815-1829.
[22] LEUNG Y H, NG A M C, XU X Y, et al. Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10(6): 1171-1183.
[23] HE Y, YAO M Y, ZHOU J L, et al. Mg(OH)2 nanosheets on Ti with immunomodulatory function for orthopedic applications[J]. Regen Biomater, 2022, 9: rbac027.
[24] GO E J, KANG E Y, LEE S K, et al. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve in vivo bone regeneration[J]. Biomater Sci, 2020, 8(3): 937-948.