• Journal of the Chinese Ceramic Society
  • Vol. 52, Issue 5, 1570 (2024)
DU Jiaheng1, FAN Xinli2, XIAO Dongqin3,*, LIU GangLi2..., Yin Yiran1, He Kui1, Yan Jiyuan1, LI Zhong11, TANYanfei4 and DUAN Ke1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.14062/j.issn.0454-5648.20230538 Cite this Article
    DU Jiaheng, FAN Xinli, XIAO Dongqin, LIU GangLi, Yin Yiran, He Kui, Yan Jiyuan, LI Zhong1, TANYanfei, DUAN Ke. Antibacterial Properties and Biological Activities of Magnesium Hydroxide and Magnesium Oxide Coatings by Electrochemical Deposition on Titanium Surface[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1570 Copy Citation Text show less
    References

    [1] TANDE A J, PATEL R. Prosthetic joint infection[J]. Clin Microbiol Rev, 2014, 27(2): 302-345.

    [2] SOBOLEV A, VALKOV A, KOSSENKO A, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial Ag nanoparticles[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39534-39544.

    [3] TSIKOPOULOS K, MERONI G, KALOUDIS P, et al. Is nanomaterial- and vancomycin-loaded polymer coating effective at preventing methicillin-resistant Staphylococcus aureus growth on titanium diskS An in vitro study[J]. Int Orthop, 2023, 47(6): 1415-1422.

    [4] AMEH T, SAYES C M. The potential exposure and hazards of copper nanoparticles: A review[J]. Environ Toxicol Pharmacol, 2019, 71: 103220.

    [5] OLSEN I. Biofilm-specific antibiotic tolerance and resistance[J]. Eur J Clin Microbiol Infect Dis, 2015, 34(5): 877-886.

    [6] YU S Z, LI Z H, HAN L W, et al. Biocompatible MgO film on titanium substrate prepared by sol?gel method[J]. Rare Met Mater Eng, 2018, 47(9): 2663-2667.

    [7] HICKEY D J, MUTHUSAMY D, WEBSTER T J. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications[J]. J Biomed Mater Res A, 2017, 105(11): 3136-3147.

    [8] NYGREN H, CHAUDHRY M, GUSTAFSSON S, et al. Increase of compact bone thickness in rat tibia after implanting MgO into the bone marrow cavity[J]. J Funct Biomater, 2014, 5(3): 158-166.

    [9] JANNING C, WILLBOLD E, VOGT C, et al. Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling[J]. Acta Biomater, 2010, 6(5): 1861-1868.

    [10] PENG W Z, REN S S, ZHANG Y B, et al. MgO nanoparticles- incorporated PCL/gelatin-derived coaxial electrospinning nanocellulose membranes for periodontal tissue regeneration[J]. Front Bioeng Biotechnol, 2021, 9: 668428.

    [11] ZHU Y, TANG Y F, RUAN Z, et al. Mg(OH)2 nanoparticles enhance the antibacterial activities of macrophages by activating the reactive oxygen species[J]. J Biomed Mater Res, 2021, 109(11): 2369-2380.

    [12] WANG Y, WU Z Y, WANG T, et al. Antibacterial and physical properties of resin cements containing MgO nanoparticles[J]. J Mech Behav Biomed Mater, 2023, 142: 105815.

    [13] OKAMOTO K, KUDO D, PHUONG D N D, et al. Magnesium hydroxide nanoparticles inhibit the biofilm formation of cariogenic microorganisms[J]. Nanomaterials, 2023, 13(5): 864.

    [14] CHO N, LEE B, CHOI S, et al. Brucite shows antibacterial activity via establishment of alkaline conditions[J]. RSC Adv, 2021, 11(29): 18003-18008.

    [15] GURRAPPA I, BINDER L. Electrodeposition of nanostructured coatings and their characterization?A review[J]. Sci Technol Adv Mater, 2008, 9(4): 043001.

    [17] DONG Ziyan, DAI Hui, MA Shihong, et al. Drug Stand China, 2014, 15(2): 120-121.

    [18] PAN X H, WANG Y H, CHEN Z, et al. Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)?[J]. ACS Appl Mater Interfaces, 2013, 5(3): 1137-1142.

    [19] NAKAMURA Y, OKITA K, KUDO D, et al. Magnesium hydroxide nanoparticles kill exponentially growing and persister Escherichia coli cells by causing physical damage[J]. Nanomaterials, 2021, 11(6): 1584.

    [20] MUNIZ DIAZ R, CARDOSO-AVILA P E, PéREZ TAVARES J A, et al. Two-step triethylamine-based synthesis of MgO nanoparticles and their antibacterial effect against pathogenic bacteria[J]. Nanomaterials, 2021, 11(2): 410.

    [21] TAN J, LIU Z X, WANG D H, et al. A facile and universal strategy to endow implant materials with antibacterial ability via alkalinity disturbing bacterial respiration[J]. Biomater Sci, 2020, 8(7): 1815-1829.

    [22] LEUNG Y H, NG A M C, XU X Y, et al. Mechanisms of antibacterial activity of MgO: Non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli[J]. Small, 2014, 10(6): 1171-1183.

    [23] HE Y, YAO M Y, ZHOU J L, et al. Mg(OH)2 nanosheets on Ti with immunomodulatory function for orthopedic applications[J]. Regen Biomater, 2022, 9: rbac027.

    [24] GO E J, KANG E Y, LEE S K, et al. An osteoconductive PLGA scaffold with bioactive β-TCP and anti-inflammatory Mg(OH)2 to improve in vivo bone regeneration[J]. Biomater Sci, 2020, 8(3): 937-948.

    DU Jiaheng, FAN Xinli, XIAO Dongqin, LIU GangLi, Yin Yiran, He Kui, Yan Jiyuan, LI Zhong1, TANYanfei, DUAN Ke. Antibacterial Properties and Biological Activities of Magnesium Hydroxide and Magnesium Oxide Coatings by Electrochemical Deposition on Titanium Surface[J]. Journal of the Chinese Ceramic Society, 2024, 52(5): 1570
    Download Citation