• Photonics Research
  • Vol. 9, Issue 2, 116 (2021)
Lei Chen1, Qian Ma2, Qian Fan Nie1, Qiao Ru Hong2, Hao Yang Cui1, Ying Ruan1, and Tie Jun Cui2、*
Author Affiliations
  • 1College of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China
  • 2State Key Laboratory of Millimeter Wave, Southeast University, Nanjing 210096, China
  • show less
    DOI: 10.1364/PRJ.412052 Cite this Article Set citation alerts
    Lei Chen, Qian Ma, Qian Fan Nie, Qiao Ru Hong, Hao Yang Cui, Ying Ruan, Tie Jun Cui. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission[J]. Photonics Research, 2021, 9(2): 116 Copy Citation Text show less
    References

    [1] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [2] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [3] H. T. Chen, A. J. Taylor, N. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [4] L. Wu, M. Oudich, W. Cao, H. Jiang, Y. Jing. Routing acoustic waves via a metamaterial with extreme anisotropy. Phys. Rev. Appl., 12, 044011(2019).

    [5] G. Hu, L. Tang, X. Cui. On the modelling of membrane-coupled Helmholtz resonator and its application in acoustic metamaterial system. Mech. Syst. Sig. Process., 132, 595-608(2019).

    [6] N. G. R. de Melo Filho, C. Claeys, E. Deckers, W. Desmet. Realisation of a thermoformed vibro-acoustic metamaterial for increased STL in acoustic resonance driven environments. Appl. Acoust., 156, 78-82(2019).

    [7] B. L. Davis, M. I. Hussein. Nanophononic metamaterial: thermal conductivity reduction by local resonance. Phys. Rev. Lett., 112, 055505(2014).

    [8] Y. Guo, Z. Jacob. Thermal hyperbolic metamaterials. Opt. Express, 21, 15014-15019(2013).

    [9] T. Han, X. Bai, J. T. Thong, B. Li, C. W. Qiu. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mater., 26, 1731-1734(2014).

    [10] M. Li, S. Q. Xiao, Y. Y. Bai, B. Z. Wang. An ultrathin and broadband radar absorber using resistive FSS. IEEE Antennas Wireless Propag. Lett., 11, 748-751(2012).

    [11] S. Zuo, Y. Cheng, X. Liu. Tunable perfect negative reflection based on an acoustic coding metasurface. Appl. Phys. Lett., 114, 203505(2019).

    [12] X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, W. J. Padilla. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett., 107, 045901(2011).

    [13] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [14] Q. Ma, C. B. Shi, G. D. Bai, T. Y. Chen, A. Noor, T. J. Cui. Beam-editing coding metasurfaces based on polarization bit and orbital-angular-momentum-mode bit. Adv. Opt. Mater., 5, 1700548(2017).

    [15] L. Zhang, R. Y. Wu, G. D. Bai, H. T. Wu, Q. Ma, X. Q. Chen. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves. Adv. Funct. Mater., 28, 1802205(2018).

    [16] L. Chen, H. L. Ma, X. J. Song, Y. Ruan, H. Y. Cui. Dual-functional tunable coding metasurface based on saline water substrate. Sci. Rep., 8, 2070(2018).

    [17] S.-H. Li, J.-S. Li, J.-Z. Sun. Terahertz wave front manipulation based on Pancharatnam-Berry coding metasurface. Opt. Mater. Express, 9, 1118-1127(2019).

    [18] Q. Ma, G. D. Bai, H. B. Jing, C. Yang, L. Li, T. J. Cui. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl., 8, 98(2019).

    [19] L. Chen, Q. Ma, H. B. Jing, H. Y. Cui, Y. Liu, T. J. Cui. Space-energy digital-coding metasurface based on an active amplifier. Phys. Rev. Appl., 11, 054051(2019).

    [20] P. C. Wu, W. Zhu, Z. X. Shen, D. P. Tsai. Broadband wide-angle multifunctional polarization converter via liquid-metal-based metasurface. Adv. Opt. Mater., 5, 1600938(2017).

    [21] H.-X. Xu, S. Tang, S. Ma, W. Luo, T. Cai, S. Sun, Q. He, L. Zhou. Tunable microwave metasurfaces for high-performance operations: dispersion compensation and dynamical switch. Sci. Rep., 6, 38255(2016).

    [22] C. Huang, C. Zhang, J. Yang, B. Sun, B. Zhao, X. Luo. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 5, 1700485(2017).

    [23] Y. Zárate, I. V. Shadrivov, D. A. Powell. Tunable focusing by a flexible metasurface. Photon. Nanostr. Fundam. Appl., 26, 62-68(2017).

    [24] F. Callewaert, V. Velev, S. Jiang, A. V. Sahakian, P. Kumar, K. Aydin. Inverse-designed stretchable metalens with tunable focal distance. Appl. Phys. Lett., 112, 091102(2018).

    [25] Q. Ma, Q. R. Hong, G. D. Bai, H. B. Jing, T. J. Cui. Editing arbitrarily linear polarizations using programmable metasurface. Phys. Rev. Appl., 13, 021003(2020).

    [26] Z. Luo, M. Z. Chen, Z. X. Wang, L. Zhou, T. J. Cui. Digital nonlinear metasurface with customizable nonreciprocity. Adv. Funct. Mater., 29, 1906635(2019).

    [27] Q. Ma, Q. R. Hong, X. X. Gao, H. B. Jing, C. Liu, G. D. Bai. Smart sensing metasurface with self-defined functions in dual polarizations. Nanophotonics, 9, 3271-3278(2020).

    [28] Q. Ma, L. Chen, H. B. Jing, Q. R. Hong, H. Y. Cui, Y. Liu. Controllable and programmable nonreciprocity based on detachable digital coding metasurface. Adv. Opt. Mater., 7, 1901285(2019).

    [29] M. R. Andrews, P. P. Mitra, R. deCarvalho. Tripling the capacity of wireless communications using electromagnetic polarization. Nature, 409, 316-318(2001).

    [30] C. D. Stoik, M. J. Bohn, J. L. Blackshire. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express, 16, 17039-17051(2008).

    [31] Y. Liu, Y. Hao, K. Li, S. Gong. Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial. IEEE Antennas Wireless Propag. Lett., 15, 80-83(2016).

    [32] X. Yu, X. Gao, W. Qiao, L. Wen, W. Yang. Broadband tunable polarization converter realized by graphene-based metamaterial. IEEE Photonics Technol. Lett., 28, 2399-2402(2016).

    [33] M. F. O. Hameed, S. S. A. Obayya, H. A. El-Mikati. Passive polarization converters based on photonic crystal fiber with L-shaped core region. J. Lightwave Technol., 30, 283-289(2012).

    [34] X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao. An active metamaterial for polarization manipulating. Adv. Opt. Mater., 2, 945-949(2014).

    [35] W. Li, S. Xia, B. He, J. Chen, H. Shi, A. Zhang. A reconfigurable polarization converter using active metasurface and its application in horn antenna. IEEE Trans. Antennas Propag., 64, 5281-5290(2016).

    [36] Z. Tao, X. Wan, B. C. Pan, T. J. Cui. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Appl. Phys. Lett., 110, 121901(2017).

    [37] Y. Cheng, W. Li, X. Mao. Triple-band polarization angle independent 90 degrees polarization rotator based on Fermat’s spiral structure planar chiral metamaterial. Prog. Electromagn. Res., 165, 35-45(2019).

    [38] J. Zhao, X. Yang, J. Y. Dai, Q. Cheng, X. Li, T. J. Cui. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 6, 231-238(2019).

    [39] Q. Ma, T. J. Cui. Information metamaterials: bridging the physical world and digital world. PhotoniX, 1, 1(2020).

    [40] T. J. Cui, L. Li, S. Liu, Q. Ma, Q. Cheng. Information metamaterial systems. iScience, 23, 101403(2020).

    CLP Journals

    [1] Che Liu, Wen Ming Yu, Qian Ma, Lianlin Li, Tie Jun Cui. Intelligent coding metasurface holograms by physics-assisted unsupervised generative adversarial network[J]. Photonics Research, 2021, 9(4): B159

    Lei Chen, Qian Ma, Qian Fan Nie, Qiao Ru Hong, Hao Yang Cui, Ying Ruan, Tie Jun Cui. Dual-polarization programmable metasurface modulator for near-field information encoding and transmission[J]. Photonics Research, 2021, 9(2): 116
    Download Citation