• Photonics Research
  • Vol. 7, Issue 8, 926 (2019)
Hyungwoo Choi1, Dongyu Chen2, Fan Du1, Rene Zeto1, and Andrea Armani1,2,*
Author Affiliations
  • 1Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
  • 2Ming Hsieh Department of Electrical Engineering-Electrophysics, University of Southern California, Los Angeles, California 90089, USA
  • show less
    DOI: 10.1364/PRJ.7.000926 Cite this Article Set citation alerts
    Hyungwoo Choi, Dongyu Chen, Fan Du, Rene Zeto, Andrea Armani, "Low threshold anti-Stokes Raman laser on-chip," Photonics Res. 7, 926 (2019) Copy Citation Text show less
    References

    [1] E. D. Potter, J. L. Herek, S. Pedersen, Q. Liu, A. H. Zewail. Femtosecond laser control of a chemical reaction. Nature, 355, 66-68(1992).

    [2] M. Motzkus, S. Pedersen, A. Zewail. Femtosecond real-time probing of reactions. 19. Nonlinear (DFWM) techniques for probing transition states of uni- and bimolecular reactions. J. Phys. Chem., 100, 5620-5633(1996).

    [3] A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science, 282, 919-922(1998).

    [4] M. Shim, B. Wilson, E. Marple, M. Wach. Study of fiber-optic probes for in vivo medical Raman spectroscopy. Appl. Spectrosc., 53, 619-627(1999).

    [5] E. Hanlon, R. Manoharan, T. Koo, K. Shafer, J. Motz, M. Fitzmaurice, J. Kramer, I. Itzkan, R. Dasari, M. Feld. Prospects for in vivo Raman spectroscopy. Phys. Med. Biol., 45, R1-R59(2000).

    [6] K. Kong, C. Kendall, N. Stone, I. Notingher. Raman spectroscopy for medical diagnostics from in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev., 89, 121-134(2015).

    [7] M. Islam. Raman amplifiers for telecommunications. IEEE J. Sel. Top. Quantum Electron., 8, 548-559(2002).

    [8] M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. Hernanz, P. Horche. Supercontinuum generation using a continuous-wave Raman fiber laser. Opt. Commun., 226, 323-328(2003).

    [9] J. Sharping, Y. Okawachi, A. Gaeta. Wide bandwidth slow light using a Raman fiber amplifier. Opt. Express, 13, 6092-6098(2005).

    [10] T. J. Kippenberg, S. M. Spillane, D. K. Armani, K. J. Vahala. Ultralow-threshold microcavity Raman laser on a microelectronic chip. Opt. Lett., 29, 1224-1226(2004).

    [11] P. Latawiec, V. Venkataraman, M. J. Burek, B. J. M. Hausmann, I. Bulu, M. Loncar. On-chip diamond Raman laser. Optica, 2, 924-928(2015).

    [12] X. Liu, C. Sun, B. Xiong, L. Wang, J. Wang, Y. Han, Z. Hao, H. Li, Y. Luo, J. Yan, T. Wei, Y. Zhang, J. Wang. Integrated continuous-wave aluminum nitride Raman laser. Optica, 4, 893-896(2017).

    [13] G. Wang, M. Zhao, Y. Qin, Z. Yin, X. Jiang, M. Xiao. Demonstration of an ultra-low-threshold phonon laser with coupled microtoroid resonators in vacuum. Photon. Res., 5, 73-76(2017).

    [14] S. H. Huang, X. Jiang, B. Peng, C. Janisch, A. Cocking, Ş. K. Özdemir, Z. Liu, L. Yang. Surface-enhanced Raman scattering on dielectric microspheres with whispering gallery mode resonance. Photon. Res., 6, 346-356(2018).

    [15] C. Raman, K. Krishnan. A new type of secondary radiation. Nature, 121, 501-502(1928).

    [16] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [17] K. Georgiou, R. Jayaprakash, A. Askitopoulos, D. M. Coles, P. G. Lagoudakis, D. G. Lidzey. Generation of anti-Stokes fluorescence in a strongly coupled organic semiconductor microcavity. ACS Photon., 5, 4343-4351(2018).

    [18] G. Eckhardt, D. Bortfeld, M. Geller. Stimulated emission of Stokes and anti-Stokes Raman lines from diamond, calcite, and alpha-sulfur single crystals. Appl. Phys. Lett., 3, 137-138(1963).

    [19] D. Leach, R. Chang, W. Acker. Stimulated anti-Stokes Raman scattering in microdroplets. Opt. Lett., 17, 387-389(1992).

    [20] D. Farnesi, F. Cosi, C. Trono, G. C. Righini, G. N. Conti, S. Soria. Stimulated anti-Stokes Raman scattering resonantly enhanced in silica microspheres. Opt. Lett., 39, 5993-5996(2014).

    [21] I. Itzkan, D. A. Leonard. Observation of coherent anti-Stokes Raman scattering from liquid water. Appl. Phys. Lett., 26, 106-108(1975).

    [22] B. Hudson, W. Hetherington, S. Cramer, I. Chabay, G. K. Klauminzer. Resonance enhanced coherent anti-Stokes Raman scattering. Proc. Natl. Acad. Sci. USA, 73, 3798-3802(1976).

    [23] J. J. Barrett, R. F. Begley. Low-power cw generation of coherent anti-Stokes Raman radiation in CH4 gas. Appl. Phys. Lett., 27, 129-131(1975).

    [24] K. Rittner, A. Hope, T. Muller-Wirts, B. Wellegehausen. Continuous anti-Stokes Raman lasers in a He-Ne laser discharge. IEEE J. Quantum Electron., 28, 342-347(1992).

    [25] Y.-Y. Cai, E. Sung, R. Zhang, L. J. Tauzin, J. G. Liu, B. Ostovar, Y. Zhang, W.-S. Chang, P. Nordlander, S. Link. Anti-Stokes emission from hot carriers in gold nanorods. Nano Lett., 19, 1067-1073(2019).

    [26] N. Deka, A. J. Maker, A. M. Armani. Titanium-enhanced Raman microcavity laser. Opt. Lett., 39, 1354-1357(2014).

    [27] H. Choi, A. M. Armani. High efficiency Raman lasers based on Zr-doped silica hybrid microcavities. ACS Photon., 3, 2383-2388(2016).

    [28] T. Kippenberg, S. Spillane, B. Min, K. Vahala. Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities. IEEE J. Sel. Top. Quantum Electron., 10, 1219-1228(2004).

    [29] M. Oxborrow. Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory Tech., 55, 1209-1218(2007).

    [30] H. S. Choi, S. Ismail, A. M. Armani. Studying polymer thin films with hybrid optical microcavities. Opt. Lett., 36, 2152-2154(2011).

    [31] A. J. Maker, B. A. Rose, A. M. Armani. Tailoring the behavior of optical microcavities with high refractive index sol-gel coatings. Opt. Lett., 37, 2844-2846(2012).

    [32] Ph. Colomban, A. Slodczyk. Raman intensity: an important tool in the study of nanomaterials and nanostructures. ACTA Phys. Pol. A, 116, 7-12(2009).

    [33] D. Armani, T. Kippenberg, S. Spillane, K. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [34] M. L. Gorodetsky, A. A. Savchenkov, V. S. Ilchenko. Ultimate Q of optical microsphere resonators. Opt. Lett., 21, 453-455(1996).

    [35] D. Hollenbeck, C. D. Cantrell. Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function. J. Opt. Soc. Am. B, 19, 2886-2892(2002).

    [36] C. Evans, E. Potma, M. Puoris’haag, D. Cote, C. Lin, X. Xie. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA, 102, 16807-16812(2005).

    [37] X. Nan, E. O. Potma, X. S. Xie. Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-Stokes Raman scattering microscopy. Biophys. J., 91, 728-735(2006).

    [38] C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, G. S. Young. Chemically-selective imaging of brain structures with CARS microscopy. Opt. Express, 15, 12076-12087(2007).

    [39] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher. Remote quantum entanglement between two micromechanical oscillators. Nature, 556, 473-477(2018).

    [40] T. T. Tran, B. Regan, E. A. Ekimov, Z. Mu, Y. Zhou, W. Gao, P. Narang, A. S. Solntsev, M. Toth, I. Aharonovich, C. Bradac. Anti-Stokes excitation of solid-state quantum emitters for nanoscale thermometry. Sci. Adv., 5, eaav9180(2019).

    CLP Journals

    [1] Jun-Wen Luo, De-Wei Wu, Qiang Miao, Tian-Li Wei. Research progress in non-classical microwave states preparation based on cavity optomechanical system[J]. Acta Physica Sinica, 2020, 69(5): 054203-1