• Chinese Journal of Lasers
  • Vol. 51, Issue 11, 1101002 (2024)
Yujie Peng1,†, Yi Xu1,†, Lianghong Yu1,†, Xiaoming Lu..., Cheng Wang, Zhaoyang Li, Zebiao Gan, Fenxiang Wu, Xinliang Wang, Yanyan Li, Yanqi Liu, Dingjun Yin, Huina Chen, Xiaoyan Liang*, Wei Qu, Yuxin Leng, Ruxin Li and Zhizhan Xu|Show fewer author(s)
Author Affiliations
  • State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/CJL240590 Cite this Article Set citation alerts
    Yujie Peng, Yi Xu, Lianghong Yu, Xiaoming Lu, Cheng Wang, Zhaoyang Li, Zebiao Gan, Fenxiang Wu, Xinliang Wang, Yanyan Li, Yanqi Liu, Dingjun Yin, Huina Chen, Xiaoyan Liang, Wei Qu, Yuxin Leng, Ruxin Li, Zhizhan Xu. Review on Development of Shanghai Super‑Intense Ultra‑Fast Laser Facility[J]. Chinese Journal of Lasers, 2024, 51(11): 1101002 Copy Citation Text show less
    References

    [1] Perry M D, Mourou G. Terawatt to petawatt subpicosecond lasers[J]. Science, 264, 917-924(1994).

    [2] Kiriyama H, Mori M, Pirozhkov A S et al. High-contrast, high-intensity petawatt-class laser and applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 1601118(2015).

    [3] Aoyama M, Yamakawa K, Akahane Y et al. 0.85-PW, 33-fs Ti∶sapphire laser[J]. Optics Letters, 28, 1594-1596(2003).

    [4] Wang Z H, Liu C, Shen Z W et al. High-contrast 1.16 PW Ti∶sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier[J]. Optics Letters, 36, 3194-3196(2011).

    [5] Yu T J, Lee S K, Sung J H et al. Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti: sapphire laser[J]. Optics Express, 20, 10807-10815(2012).

    [6] Chu Y X, Liang X Y, Yu L H et al. High-contrast 2.0 Petawatt Ti∶sapphire laser system[J]. Optics Express, 21, 29231-29239(2013).

    [7] Bahk S W, Rousseau P, Planchon T A et al. Generation and characterization of the highest laser intensities (1022 W/cm2)[J]. Optics Letters, 29, 2837-2839(2004).

    [8] Yoon J W, Kim Y G, Choi I W et al. Realization of laser intensity over 1023  W/cm2[J]. Optica, 8, 630-635(2021).

    [9] Service R F. Laser labs race for the petawatt[J]. Science, 301, 154-156(2003).

    [10] Danson C N, Haefner C, Bromage J et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).

    [11] Mourou G, Tajima T. The extreme light infrastructure: optics’ next horizon[J]. Optics and Photonics News, 22, 47-51(2011).

    [13] eli. ELI beamlines facility[EB/OL]. https:∥www.eli-beams.eu

    [14] eli. Gérard mourou, the initiator of our institute, becomes professor in szeged[EB/OL]. https:∥www.eli-hu.hu

    [15] eli. ELI-NP research departments[EB/OL]. https:∥www.eli-np.ro

    [16] Bromage J, Bahk S W, Bedzyk M et al. MTW-OPAL: a technology development platform for ultra-intense optical parametric chirped-pulse amplification systems[J]. High Power Laser Science and Engineering, 9, e63(2021).

    [17] Efim K, Andrey S, Igor K et al. eXawatt center for extreme light studies[J]. High Power Laser Science and Engineering, 11, e78(2023).

    [18] Zeng X M, Zhou K N, Zuo Y L et al. Multi-Petawatt laser facility fully based on optical parametric chirped-pulse amplification[J]. Optics Letters, 42, 2014-2017(2017).

    [19] Wang F Y, Xie G Q, Yuan P et al. Theoretical design of 100-terawatt-level mid-infrared laser[J]. Laser Physics Letters, 12, 075402(2015).

    [20] Ma J G, Wang J, Yuan P et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal[J]. Optica, 2, 1006-1009(2015).

    [21] Liang X Y, Leng Y X, Wang C et al. Parasitic lasing suppression in high gain femtosecond petawatt Ti∶sapphire amplifier[J]. Optics Express, 15, 15335-15341(2007).

    [22] Chu Y X, Gan Z B, Liang X Y et al. High-energy large-aperture Ti∶sapphire amplifier for 5 PW laser pulses[J]. Optics Letters, 40, 5011-5014(2015).

    [23] Xu L, Yu L H, Liang X Y et al. High-energy noncollinear optical parametric-chirped pulse amplification in LBO at 800 nm[J]. Optics Letters, 38, 4837-4840(2013).

    [24] Yu L H, Liang X Y, Xu L et al. Optimization for high-energy and high-efficiency broadband optical parametric chirped-pulse amplification in LBO near 800 nm[J]. Optics Letters, 40, 3412-3415(2015).

    [25] Xu Y, Lu J, Li W K et al. A stable 200 TW/1 Hz Ti∶sapphire laser for driving full coherent XFEL[J]. Optics & Laser Technology, 79, 141-145(2016).

    [26] Wang P F, Li Y Y, Li W K et al. 2.6 mJ/100 Hz CEP-stable near-single-cycle 4 μm laser based on OPCPA and hollow-core fiber compression[J]. Optics Letters, 43, 2197-2200(2018).

    [27] Wang P F, Shao B J, Su H P et al. High-repetition-rate, high-peak-power 1450 nm laser source based on optical parametric chirped pulse amplification[J]. High Power Laser Science and Engineering, 7, e32(2019).

    [28] Gan Z B, Yu L H, Wang C et al. The Shanghai superintense ultrafast laser facility (SULF) project[M]. Progress in ultrafast intense laser science XVI, 141, 199-217(2021).

    [29] Yu L P, Xu Y, Liu Y Q et al. High-contrast front end based on cascaded XPWG and femtosecond OPA for 10-PW-level Ti∶sapphire laser[J]. Optics Express, 26, 2625-2633(2018).

    [30] Gan Z B, Yu L H, Li S et al. 200 J high efficiency Ti∶sapphire chirped pulse amplifier pumped by temporal dual-pulse[J]. Optics Express, 25, 5169-5178(2017).

    [31] Li S, Wang C, Liu Y Q et al. High-order dispersion control of 10-petawatt Ti∶sapphire laser facility[J]. Optics Express, 25, 17488-17498(2017).

    [32] Guo Z, Yu L H, Wang J Y et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti∶sapphire chirped pulse amplification laser system[J]. Optics Express, 26, 26776-26786(2018).

    [33] Zhang Z X, Wu F X, Hu J B et al. The 1 PW/0.1 Hz laser beamline in SULF facility[J]. High Power Laser Science and Engineering, 8, e4(2020).

    [34] Li A X, Qin C Y, Zhang H et al. Acceleration of 60 MeV proton beams in the commissioning experiment of SULF-10 PW laser[J]. High Power Laser Science and Engineering, 10, e26(2022).

    [35] Shao B J, Li Y Y, Peng Y J et al. Broad-bandwidth high-temporal-contrast carrier-envelope-phase-stabilized laser seed for 100 PW lasers[J]. Optics Letters, 45, 2215-2218(2020).

    [36] Li Y Y, Shao B J, Peng Y J et al. Ultra-broadband pulse generation via hollow-core fiber compression and frequency doubling for ultra-intense lasers[J]. High Power Laser Science and Engineering, 11, e5(2023).

    [37] Wang X L, Liu X Y, Lu X M et al. 13.4 fs, 0.1 Hz OPCPA front end for the 100 PW-class laser facility[J]. Ultrafast Science, 2022, 9894358(2022).

    [38] Wu Y T, Ji L L, Li R X. Impact of laser parameters on attainable upper limit of laser intensity in non-ideal vacuum[J]. High Power Laser and Particle Beams, 35, 012001(2023).

    Yujie Peng, Yi Xu, Lianghong Yu, Xiaoming Lu, Cheng Wang, Zhaoyang Li, Zebiao Gan, Fenxiang Wu, Xinliang Wang, Yanyan Li, Yanqi Liu, Dingjun Yin, Huina Chen, Xiaoyan Liang, Wei Qu, Yuxin Leng, Ruxin Li, Zhizhan Xu. Review on Development of Shanghai Super‑Intense Ultra‑Fast Laser Facility[J]. Chinese Journal of Lasers, 2024, 51(11): 1101002
    Download Citation