• High Power Laser and Particle Beams
  • Vol. 35, Issue 5, 055003 (2023)
Shengfei Li1、2, Xianfeng Zhu3, Ziwei Liu3, Qi Xiong1、2, Zhe Li3, and Yanxin Li1、2、*
Author Affiliations
  • 1College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, China
  • 2Hubei Provincial Engineering Technology Research Center for Power Transmission Line, China Three Gorges University, Yichang 443002, China
  • 3State Grid Yichang Power Supply Company, Yichang 443000, China
  • show less
    DOI: 10.11884/HPLPB202335.220281 Cite this Article
    Shengfei Li, Xianfeng Zhu, Ziwei Liu, Qi Xiong, Zhe Li, Yanxin Li. Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper[J]. High Power Laser and Particle Beams, 2023, 35(5): 055003 Copy Citation Text show less
    Structural schematic diagram of suction type electromagnetic force tube flanging device
    Fig. 1. Structural schematic diagram of suction type electromagnetic force tube flanging device
    Current distribution diagram of flanging system with magnetic field shaper structure
    Fig. 2. Current distribution diagram of flanging system with magnetic field shaper structure
    Circuit topology diagram of pulse power system
    Fig. 3. Circuit topology diagram of pulse power system
    Coil current
    Fig. 4. Coil current
    2D axisymmetric model diagram of small-size tube flanging system
    Fig. 5. 2D axisymmetric model diagram of small-size tube flanging system
    Comparison of flanging effects
    Fig. 6. Comparison of flanging effects
    3D deformation map for numerical simulation
    Fig. 7. 3D deformation map for numerical simulation
    Comparison diagram of electromagnetic force vector distribution at the end of tube fittings
    Fig. 8. Comparison diagram of electromagnetic force vector distribution at the end of tube fittings
    Electromagnetic force density comparison chart
    Fig. 9. Electromagnetic force density comparison chart
    Comparison of changes in magnetic flux density and eddy current density
    Fig. 10. Comparison of changes in magnetic flux density and eddy current density
    Flanging effect under two working conditions at different initial discharge voltages
    Fig. 11. Flanging effect under two working conditions at different initial discharge voltages
    objectparametervalue
    AA1060 aluminum alloy tube fitting material parametersdensity/(kg·m−3) 2710
    conductance/(S·m−1) 3.76×107
    relative magnetic permeability1
    relative dielectric constant1
    Poisson's ratio0.33
    initial yield stress/MPa98
    material parameters of coil and magnetic field shaper (copper)density/(kg·m−3) 8930
    conductance/(S·m−1) 5.99×107
    relative magnetic permeability1
    relative dielectric constant1
    geometric dimensions of the tube fittingthe height of the tube fitting/mm40
    width of the tube fitting/mm1
    inner diameter of the tube fitting/mm10
    outer diameter of the tube fitting/mm11
    geometric dimensions of the coilheight of a single turn coil/mm4
    width of a single turn coil/mm1
    inner diameter of the coil/mm26
    outer diameter of the coil/mm32
    the number of turns of the coil4×6
    geometric dimensions of the magnetic field shaperheight of the magnetic field shaper/mm4
    inner diameter of the magnetic field shaper/mm11
    outer diameter of the magnetic field shaper/mm24.5
    Table 1. Material parameters and geometric structure parameters of the model
    parameterslow discharge systemfast discharge system
    symbolvaluesymbol/unitvalue
    capacitance${C_{\rm{S}}}$/μF 3200${C_{\rm{F}}}$/μF 200
    initial discharge voltage${U_{\rm{S}}}$/kV 8${U_{\rm{F}}}$/kV 6.75
    equivalent resistance${R_{\rm{S}}}$0.10${R_{\rm{F}}}$0.09
    freewheeling diode${R_{{\rm{DS}}}}$0.02$ {R_{{\rm{DF}}}} $0.02
    equivalent inductance${L_{\rm{S}}}$/mH 0.60${L_{\rm{F}}}$/μH 5
    Table 2. Pulse power system parameters
    working conditionDz/mm Dr/mm θ/(°)
    without magnetic field shaper2.945.5238
    with flat magnetic field shaper6.277.8864
    with stepped magnetic field shaper7.608.2090
    with trapezoid magnetic field shaper5.857.6568
    Table 3. Displacement of point A and flange angle of tube fittings under different working conditions
    initial discharge voltage/kV flanging angle without magnetic field shaper/(°) flanging angle with magnetic field shaper/(°)
    5.752551
    6.003056
    6.253464
    6.503673
    Table 4. Flanging angles under two working conditions at different initial discharge voltages
    Shengfei Li, Xianfeng Zhu, Ziwei Liu, Qi Xiong, Zhe Li, Yanxin Li. Attractive electromagnetic force flanging method for small tube fittings with magnetic field shaper[J]. High Power Laser and Particle Beams, 2023, 35(5): 055003
    Download Citation