• Optics and Precision Engineering
  • Vol. 31, Issue 23, 3438 (2023)
Zijing ZHAO1, Yanfu LIU1, Hongchao ZHAO2,*, Lei FAN1..., Yong YAN1 and Zizheng LI1|Show fewer author(s)
Author Affiliations
  • 1School of Physics and Astronomy, Sun Yat-sen University, Zhuhai59082, China
  • 2School of Advanced Manufacturing, Shezhen Campus of Sun Yat-sen University, Shenzhen518033, China
  • show less
    DOI: 10.37188/OPE.20233123.3438 Cite this Article
    Zijing ZHAO, Yanfu LIU, Hongchao ZHAO, Lei FAN, Yong YAN, Zizheng LI. Pointing stability control method for super stable satellite based on composite axis control[J]. Optics and Precision Engineering, 2023, 31(23): 3438 Copy Citation Text show less
    Principle diagram of single-axis attitude maneuvering of drag-free satellite
    Fig. 1. Principle diagram of single-axis attitude maneuvering of drag-free satellite
    Calculation results of additional interference moment
    Fig. 2. Calculation results of additional interference moment
    Factors affecting attitude adjustment
    Fig. 3. Factors affecting attitude adjustment
    Simulation results under different conditions
    Fig. 4. Simulation results under different conditions
    Monte Carlo simulation results
    Fig. 5. Monte Carlo simulation results
    Displacement-output curve of piezoelectric ceramic
    Fig. 6. Displacement-output curve of piezoelectric ceramic
    Control block diagram of velocity-attitude double-loop
    Fig. 7. Control block diagram of velocity-attitude double-loop
    Mass velocity and satellite angle before and after nonlinear compensation
    Fig. 8. Mass velocity and satellite angle before and after nonlinear compensation
    Framework of compound-axis control system
    Fig. 9. Framework of compound-axis control system
    Residual attitude error after tuning
    Fig. 10. Residual attitude error after tuning
    Variation of stability error with bandwidth of auxiliary axis
    Fig. 11. Variation of stability error with bandwidth of auxiliary axis
    Residual error of auxiliary axis at 0.485 6 Hz
    Fig. 12. Residual error of auxiliary axis at 0.485 6 Hz
    Angle and angular velocity response of main axis
    Fig. 13. Angle and angular velocity response of main axis
    Angle and angular velocity response of auxiliary axis
    Fig. 14. Angle and angular velocity response of auxiliary axis
    Error amplitude spectral density of main and auxiliary axes
    Fig. 15. Error amplitude spectral density of main and auxiliary axes
    仿真参数数 值
    卫星转动惯量I/(kg·m-240,60,40
    卫星角速度ω(rad·s-15×10-8,3×10-8,1.5×10-8
    小质量块最大位移l/μm30
    小质量块质量m/kg0.35
    等效力臂R/m1
    Table 1. Parameters of additional disturbing torque
    工作电压/V最大行程/μm静态刚度/(N·μm-1等效电容/μF质量/kg最大推力/N
    0~1 000300.330.630.4712 500
    Table 2. Parameters of piezo actuator P-225.20
    仿真参数数 值

    卫星转动惯量

    J/(kg·m-2

    40,60,40
    初始角度θ/rad5.7×10-7,1.1×10-6,9×10-7

    初始角速度

    ω/(rad·s-1

    5×10-8,3×10-8,1.5×10-8
    期望角度θd/rad10-9,10-9,10-9
    小质量块质量m/kg0.35
    等效力臂L/m1
    Table 3. Simulation parameters of drag-free satellite
    姿态轴角度/nrad角速度/(nrad·s-1
    主轴X34.4713.21
    主轴Y20.117.06
    主轴Z12.764.21
    子轴X15.602.51
    子轴Y14.022.84
    子轴Z7.072.27
    Table 4. Root mean square of satellite attitude errors
    Zijing ZHAO, Yanfu LIU, Hongchao ZHAO, Lei FAN, Yong YAN, Zizheng LI. Pointing stability control method for super stable satellite based on composite axis control[J]. Optics and Precision Engineering, 2023, 31(23): 3438
    Download Citation