[1] W Q CHEN, R S ZHENG, P D BAADE et al. Cancer statistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132(2016).
[2] R S KWON, L M WONGKEE SONG, D G ADLER et al. Endocytoscopy. Gastrointestinal Endoscopy, 70, 610-613(2009).
[3] M R A ABAD, Y SHIMAMURA, Y FUJIYOSHI et al. Endocytoscopy: technology and clinical application in upper gastrointestinal tract. Translational Gastroenterology and Hepatology, 5, 28(2020).
[4] 4陈亚丽, 李赟, 尹跃霏, 等. 细胞内镜在上消化道早癌中的应用研究[J]. 中华消化内镜杂志, 2018, 35(10): 773-776. doi: 10.3760/cma.j.issn.1007-5232.2018.10.022CHENY L, LIY, YIY F, et al. Application of endocytoscopy in early cancer of upper gastrointestinal tract[J]. Chinese Journal of Digestive Endoscopy, 2018, 35(10): 773-776. (in Chinese). doi: 10.3760/cma.j.issn.1007-5232.2018.10.022
[5] 5徐宝腾, 杨西斌, 刘家林, 等. 高速扫描激光共聚焦显微内窥镜图像校正[J]. 光学 精密工程, 2020, 28(1): 60-68. doi: 10.3788/ope.20202801.0060XUB T, YANGX B, LIUJ L, et al. Image correction for high speed scanning confocal laser endomicroscopy[J]. Opt. Precision Eng., 2020, 28(1): 60-68.(in Chinese). doi: 10.3788/ope.20202801.0060
[6] Y KUMAGAI, K MONMA, K KAWADA. Magnifying chromoendoscopy of the esophagus:
[7] Y KUMAGAI, K TAKUBO, K KAWADA et al. A newly developed continuous zoom-focus endocytoscope. Endoscopy, 49, 176-180(2017).
[8] Y KUMAGAI, K TAKUBO, K KAWADA et al. Endocytoscopic observation of various types of esophagitis. Esophagus, 13, 200-207(2016).
[9] S ONO, A NOZAKI, K MATSUDA et al.
[10] Y KUMAGAI, K TAKUBO, K KAWADA et al. Diagnosis using deep-learning artificial intelligence based on the endocytoscopic observation of the esophagus. Esophagus, 16, 180-187(2019).
[11] N MOSHKOV, B MATHE, A KERTESZ-FARKAS et al. Test-time augmentation for deep learning-based cell segmentation on microscopy images. Scientific Reports, 10, 5068(2020).
[12] J C CAICEDO, A GOODMAN, K W KARHOHS et al. Publisher correction: Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl. Nature Methods, 17, 241(2020).
[13] E SHELHAMER, J LONG, T DARRELL. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 640-651(2017).
[14] K SIMONYAN, A ZISSERMAN. Very deep convolutional networks for large-scale image recognition. 3rd International Conference on Learning Representations, 1-14(2015).
[15] 15秦传波, 宋子玉, 曾军英, 等. 联合多尺度和注意力-残差的深度监督乳腺癌分割[J]. 光学 精密工程, 2021, 29(4): 877-895. doi: 10.37188/OPE.20212904.0877QINCH B, SONGZ Y, ZENGJ Y, et al. Deeply supervised breast cancer segmentation combined with multi-scale and attention-residuals[J]. Opt. Precision Eng., 2021, 29(4): 877-895.(in Chinese). doi: 10.37188/OPE.20212904.0877
[16] 16张文秀, 朱振才, 张永合, 等. 基于残差块和注意力机制的细胞图像分割方法[J]. 光学学报, 2020, 40(17): 76-83. doi: 10.3788/aos202040.1710001ZHANGW X, ZHUZH C, ZHANGY H, et al. Cell image segmentation method based on residual block and attention mechanism[J]. Acta Optica Sinica, 2020, 40(17): 76-83.(in Chinese). doi: 10.3788/aos202040.1710001
[18] Y KUMAGAI, K KAWADA, M HIGASHI et al. Endocytoscopic observation of various esophageal lesions at × 600: can nuclear abnormality be recognized?. Diseases of the Esophagus, 28, 269-275(2015).