• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 12, 3039 (2023)
LIU Yuwei1, JIAO Peijie1, MAO Wei1, YANG Jiangfeng1..., ZHENG Ningchong1, WANG Peng22, WU Di1 and NIE Yuefeng1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LIU Yuwei, JIAO Peijie, MAO Wei, YANG Jiangfeng, ZHENG Ningchong, WANG Peng2, WU Di, NIE Yuefeng. Ferroelectricity in Nd Doped HfO2Copy Citation Text show less
    References

    [1] BSCKE T S, MULLER J, BRUHAUS D, et al. Ferroelectricity in hafnium oxide thin films[J]. Appl Phys Lett, 2011, 99(10): 102903.

    [2] HOFFMANN M, FENGLER F P G, HERZIG M, et al. Unveiling the double-well energy landscape in a ferroelectric layer[J]. Nature, 2019, 565(7740): 464-467.

    [4] JUNQUERA J, GHOSEZ P. Critical thickness for ferroelectricity in perovskite ultrathin films[J]. Nature, 2003, 422(6931): 506-509.

    [5] JI D X, CAI S H, PAUDEL T R, et al. Freestanding crystalline oxide perovskites down to the monolayer limit[J]. Nature, 2019, 570(7759): 87-90.

    [6] LU D, BAEK D J, HONG S S, et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers[J]. Nat Mater, 2016, 15(12): 1255-1260.

    [7] CHEEMA S S, KWON D, SHANKER N, et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon[J]. Nature, 2020, 580(7804): 478-482.

    [8] PARK M H, LEE Y H, KIM H J, et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films[J]. Adv Mater, 2015, 27(11): 1811-1831.

    [9] PARK M H, CHUNG C C, SCHENK T, et al. Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction[J]. Adv Electron Mater, 2018, 4(7): 1800091.

    [10] PARK M H, LEE Y H, MIKOLAJICK T, et al. Thermodynamic and kinetic origins of ferroelectricity in fluorite structure oxides[J]. Adv Electron Mater, 2019, 5(3): 1800522.

    [11] KANG S, JANG W S, MOROZOVSKA A N, et al. Highly enhanced ferroelectricity in HfO2-based ferroelectric thin film by light ion bombardment[J]. Science, 2022, 376(6594): 731-738.

    [12] FINA I, SNCHEZ F. Epitaxial ferroelectric HfO2 films: growth, properties, and devices[J]. ACS Appl Electron Mater, 2021, 3(4): 1530-1549.

    [13] ESTANDA S, DIX N, GAZQUEZ J, et al. Engineering ferroelectric Hf0.5Zr0.5O2 thin films by epitaxial stress[J]. ACS Appl Electron Mater, 2019, 1(8): 1449-1457.

    [14] NUKALA P, WEI Y F, DE HAAS V, et al. Guidelines for the stabilization of a polar rhombohedral phase in epitaxial Hf0.5Zr0.5O2 thin films[J]. Ferroelectrics, 2020, 569(1): 148-163.

    [15] JIAO P J, LI J Y, XI Z N, et al. Ferroelectric Hf0.5Zr0.5O2 thin films deposited epitaxially on (110)-oriented SrTiO3[J]. Appl Phys Lett, 2021, 119(25): 252901.

    [16] NUKALA P, AHMADI M, WEI Y F, et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices[J]. Science, 2021, 372(6542): 630-635.

    [17] ESTANDA S, GZQUEZ J, VARELA M, et al. Critical effect of the bottom electrode on the ferroelectricity of epitaxial Hf0.5Zr0.5O2 thin films[J]. J Mater Chem C, 2021, 9(10): 3486-3492.

    [18] MUELLER S, MUELLER J, SINGH A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films[J]. Adv Funct Mater, 2012, 22(11): 2412-2417.

    [19] XU X H, HUANG F T, QI Y B, et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2: Y[J]. Nat Mater, 2021, 20(6): 826-832.

    [20] MUELLER S, ADELMANN C, SINGH A, et al. Ferroelectricity in Gd-doped HfO2Thin films[J]. ECS J Solid State Sci Technol, 2012, 1(6): N123-N126.

    [21] MULLER J, BSCKE T S, MULLER S, et al. Ferroelectric hafnium oxide: a CMOS-compatible and highly scalable approach to future ferroelectric memories[C]//2013 IEEE International Electron Devices Meeting. Washington, DC, USA. IEEE, 2014: 10.8.1-10.8.4.

    [22] SCHENK T, FANCHER C M, PARK M H, et al. On the origin of the large remanent polarization in La: HfO2[J]. Adv Electron Mater, 2019, 5(12): 1900303.

    [23] Ikesue A, Kamata K, Yoshida K. Synthesis of transparent Nd-doped HfO2-Y2O3 ceramics using HIP[J]. J Am Ceram Soc, 1996, 79(2): 359-364.

    [24] ANAND V K, ABERNATHY D L, ADROJA D T, et al. Muon spin relaxation and inelastic neutron scattering investigations of the all-in/all-out antiferromagnet Nd2Hf2O7[J]. Phys Rev B, 2017, 95(22): 224420.

    [25] LYU J K, FINA I, SOLANAS R, et al. Growth window of ferroelectric epitaxial Hf0.5Zr0.5O2 thin films[J]. ACS Appl Electron Mater, 2019, 1(2): 220-228.

    [26] Shen Z, Liao L, Zhou Y, et al. Epitaxial growth and phase evolution of ferroelectric La-doped HfO2 films. Appl Phys Lett, 120, 162904 (2022).

    [27] WEI Y F, NUKALA P, SALVERDA M, et al. A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films[J]. Nat Mater, 2018, 17(12): 1095-1100.

    [28] FERRARI S, SPIGA S, WIEMER C, et al. Germanium diffusion during HfO2 growth on Ge by molecular beam epitaxy[J]. Appl Phys Lett, 2006, 89(12): 122906.

    [29] SONG T F, BACHELET R, SAINT-GIRONS G, et al. Epitaxial ferroelectric La-doped Hf0.5Zr0.5O2 thin films[J]. ACS Appl Electron Mater, 2020, 2(10): 3221-3232.

    [30] ESTANDA S, DIX N, CHISHOLM M F, et al. Domain-matching epitaxy of ferroelectric Hf0.5Zr0.5O2(111) on La2/3Sr1/3MnO3(001)[J]. Cryst Growth Des, 2020, 20(6): 3801-3806.