• Photonics Research
  • Vol. 13, Issue 3, 632 (2025)
Kamyar Behrouzi1,2, Zhanni Wu3, Liwei Lin1,2,5, and Boubacar Kante3,4,*
Author Affiliations
  • 1Department of Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
  • 2Berkeley Sensor and Actuator Center (BSAC), Berkeley, California 94720, USA
  • 3Department of Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, California 94720, USA
  • 4Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
  • 5e-mail: lwlin@berkeley.edu
  • show less
    DOI: 10.1364/PRJ.540227 Cite this Article Set citation alerts
    Kamyar Behrouzi, Zhanni Wu, Liwei Lin, Boubacar Kante, "Single plasmonic exceptional point nanoantenna coupled to a photonic integrated circuit sensor," Photonics Res. 13, 632 (2025) Copy Citation Text show less
    References

    [1] C. Wang, M. Liu, Z. Wang. Point-of-care diagnostics for infectious diseases: from methods to devices. Nano Today, 37, 101092(2021).

    [2] H. Altug, S.-H. Oh, S. A. Maier. Advances and applications of nanophotonic biosensors. Nat. Nanotechnol., 17, 5-16(2022).

    [3] C. Lee, B. Lawrie, R. Pooser. Quantum plasmonic sensors. Chem. Rev., 121, 4743-4804(2021).

    [4] A. M. Shrivastav, U. Cvelbar, I. Abdulhalim. A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun. Biol., 4, 70(2021).

    [5] M. Piliarik, J. Homola. Surface plasmon resonance (SPR) sensors: approaching their limits?. Opt. Express, 17, 16505-16517(2009).

    [6] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [7] M. Beeg, A. Nobili, B. Orsini. A surface plasmon resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies. Sci. Rep., 9, 2064(2019).

    [8] P. Aspermair, U. Ramach, C. Reiner-Rozman. Dual monitoring of surface reactions in real time by combined surface-plasmon resonance and field-effect transistor interrogation. J. Am. Chem. Soc., 142, 11709-11716(2020).

    [9] V. M. N. Passaro, C. D. Tullio, B. Troia. Recent advances in integrated photonic sensors. Sensors, 12, 15558-15598(2012).

    [10] L. Thylén, L. Wosinski. Integrated photonics in the 21st century. Photonics Res., 2, 75-81(2014).

    [11] S. Shekhar, W. Bogaerts, L. Chrostowski. Roadmapping the next generation of silicon photonics. Nat. Commun., 15, 751(2024).

    [12] M. A. Butt, N. L. Kazanskiy, S. N. Khonina. Metal-insulator-metal waveguide plasmonic sensor system for refractive index sensing applications. Adv. Photonics Res., 4, 2300079(2023).

    [13] Y. Fang, M. Sun. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci. Appl., 4, e294(2015).

    [14] K. M. Mayer, J. H. Hafner. Localized surface plasmon resonance sensors. Chem. Rev., 111, 3828-3857(2011).

    [15] J. N. Anker, W. P. Hall, O. Lyandres. Biosensing with plasmonic nanosensors. Nat. Mater., 7, 442-453(2008).

    [16] K. Behrouzi, L. Lin. Double-coffee ring nanoplasmonic effects with convolutional neural learning for SARS-CoV-2 detection. 21st International Conference Solid-State Sensors, Actuators Microsystems, Transducers, 381-384(2021).

    [17] K. Behrouzi, L. Lin. Gold nanoparticle based plasmonic sensing for the detection of SARS-CoV-2 nucleocapsid proteins. Biosens. Bioelectron., 195, 113669(2022).

    [18] K. Behrouzi, Z. K. Fard, C.-M. Chen. Smartphone-based plasmonic biosensing via asymmetric droplets and deep generative networks. Proc. SPIE, PC12832, PC1283206(2024).

    [19] T. Xie, C. Jing, Y.-T. Long. Single plasmonic nanoparticles as ultrasensitive sensors. Analyst, 142, 409-420(2017).

    [20] M. Rothe, Y. Zhao, J. Müller. Self-assembly of plasmonic nanoantenna–waveguide structures for subdiffractional chiral sensing. ACS Nano, 15, 351-361(2021).

    [21] M. Février, P. Gogol, G. Barbillon. Integration of short gold nanoparticles chain on SOI waveguide toward compact integrated bio-sensors. Opt. Express, 20, 17402-17409(2012).

    [22] A. Haddadpour, Y. Yi. Metallic nanoparticle on micro ring resonator for bio optical detection and sensing. Biomed. Opt. Express, 1, 378-384(2010).

    [23] S. V. Boriskina, T. A. Cooper, L. Zeng. Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities. Adv. Opt. Photonics, 9, 775-827(2017).

    [24] V. Dolia, H. B. Balch, S. Dagli. Very-large-scale-integrated high quality factor nanoantenna pixels. Nat. Nanotechnol., 19, 1290-1298(2024).

    [25] J. Hu, F. Safir, K. Chang. Rapid genetic screening with high quality factor metasurfaces. Nat. Commun., 14, 4486(2023).

    [26] J.-H. Park, A. Ndao, W. Cai. Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing. Nat. Phys., 16, 462-468(2020).

    [27] A. Kodigala, T. Lepetit, B. Kanté. Exceptional points in three-dimensional plasmonic nanostructures. Phys. Rev. B, 94, 201103(2016).

    [28] M.-A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 363, eaar7709(2019).

    [29] J. Wiersig. Review of exceptional point-based sensors. Photonics Res., 8, 1457-1467(2020).

    [30] H. Hodaei, A. U. Hassan, S. Wittek. Enhanced sensitivity at higher-order exceptional points. Nature, 548, 187-191(2017).

    [31] W. Chen, Ş. Kaya Özdemir, G. Zhao. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [32] J. Wiersig. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett., 112, 1-5(2014).

    [33] J. Wiersig. Sensors operating at exceptional points: general theory. Phys. Rev. A, 93, 33809(2016).

    [34] A. Laha, A. Biswas, S. Ghosh. Nonadiabatic modal dynamics around exceptional points in an all-lossy dual-mode optical waveguide: toward chirality-driven asymmetric mode conversion. Phys. Rev. Appl., 10, 054008(2018).

    [35] J. Doppler, A. A. Mailybaev, J. Böhm. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537, 76-79(2016).

    [36] T. Goldzak, A. A. Mailybaev, N. Moiseyev. Light stops at exceptional points. Phys. Rev. Lett., 120, 013901(2018).

    [37] R. Thomas, H. Li, F. M. Ellis. Giant nonreciprocity near exceptional-point degeneracies. Phys. Rev. A, 94, 043829(2016).

    [38] A. Laha, S. Dey, H. K. Gandhi. Exceptional point and toward mode-selective optical isolation. ACS Photonics, 7, 967-974(2020).

    [39] A. A. Zyablovsky, E. S. Andrianov, A. A. Pukhov. Parametric instability of optical non-Hermitian systems near the exceptional point. Sci. Rep., 6, 29709(2016).

    [40] Ş. K. Özdemir, S. Rotter, F. Nori. Parity–time symmetry and exceptional points in photonics. Nat. Mater., 18, 783-798(2019).

    [41] H. Alaeian, J. A. Dionne. Parity-time-symmetric plasmonic metamaterials. Phys. Rev. A, 89, 033829(2014).

    [42] G. Liang, H. Huang, A. Mohanty. Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics, 15, 908-913(2021).

    [43] X. Shu, A. Li, G. Hu. Fast encirclement of an exceptional point for highly efficient and compact chiral mode converters. Nat. Commun., 13, 2123(2022).

    [44] W. Mao, Z. Fu, Y. Li. Exceptional-point-enhanced phase sensing. Sci. Adv., 10, eadl5037(2024).

    [45] A. Tuniz, M. A. Schmidt, B. T. Kuhlmey. Influence of non-Hermitian mode topology on refractive index sensing with plasmonic waveguides. Photonics Res., 10, 719-730(2022).

    [46] A. Kodigala, T. Lepetit, B. Kanté. Engineering resonance dynamics of plasmon hybridized systems. J. Appl. Phys., 117, 023110(2015).

    [47] A. Fichtner, A. Bogris, T. Nikas. Theory of phase transmission fibre-optic deformation sensing. Geophys. J. Int., 231, 1031-1039(2022).

    [48] R. Tellez-Limon, B. Bahari, L. Hsu. Integrated metaphotonics: symmetries and confined excitation of LSP resonances in a single metallic nanoparticle. Opt. Express, 24, 13875-13880(2016).

    [49] G. M. Hale, M. R. Querry. Optical constants of water in the 200-nm to 200-μm wavelength region. Appl. Opt., 12, 555-563(1973).

    [50] B. Gustavsen, A. Semlyen. Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Deliv., 14, 1052-1061(1999).

    [51] B. Gustavsen. Improving the pole relocating properties of vector fitting. IEEE Trans. Power Deliv., 21, 1587-1592(2006).

    [52] J. Wang, C. Fang, N. Dong. Ultra-broadband subwavelength grating coupler for bound state in continuum. IEEE Photonics J., 14, 2735104(2022).

    [53] Y. Yang, K. Gao, H. Zhang. Design of silicon nitride edge coupler for monolithically integrated laser on silicon photonic circuits with relaxed alignment tolerance and high efficiency. IEEE Photonics J., 14, 6621106(2022).

    [54] K. Luke, Y. Okawachi, M. R. E. Lamont. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett., 40, 4823-4826(2015).

    [55] C. Schinke, P. C. Peest, J. Schmidt. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon. AIP Adv., 5, 67168(2015).

    [56] G. Morales-Luna, M. Herrera-Domínguez, E. Pisano. Plasmonic biosensor based on an effective medium theory as a simple tool to predict and analyze refractive index changes. Opt. Laser Technol., 131, 106332(2020).

    [57] M. Zhang, W. Sweeney, C. W. Hsu. Quantum noise theory of exceptional point amplifying sensors. Phys. Rev. Lett., 123, 180501(2019).

    [58] R. Duggan, S. A. Mann, A. Alù. Limitations of sensing at an exceptional point. ACS Photonics, 9, 1554-1566(2022).

    [59] H. Loughlin, V. Sudhir. Exceptional-point sensors offer no fundamental signal-to-noise ratio enhancement. Phys. Rev. Lett., 132, 243601(2024).

    [60] W. Langbein. No exceptional precision of exceptional-point sensors. Phys. Rev. A, 98, 023805(2018).

    Kamyar Behrouzi, Zhanni Wu, Liwei Lin, Boubacar Kante, "Single plasmonic exceptional point nanoantenna coupled to a photonic integrated circuit sensor," Photonics Res. 13, 632 (2025)
    Download Citation