• Frontiers of Optoelectronics
  • Vol. 6, Issue 4, 429 (2013)
Wu TIAN, Xiong HUI*, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, and Changqing CHEN
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-013-0342-x Cite this Article
    Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Frontiers of Optoelectronics, 2013, 6(4): 429 Copy Citation Text show less
    References

    [1] Oh J H, Oh J R, Park H K, Sung Y G, Do Y R. New paradigm of multi-chip white LEDs: combination of an InGaN blue LED and full down-converted phosphor-converted LEDs. Optics Express, 2011, 19(Suppl 3): A270-A279

    [2] Li J, Lin J Y, Jiang H X. Growth of III-nitride photonic structures on large area silicon substrates. Applied Physics Letters, 2006, 88(17): 171909

    [3] Liao C T, Tsai M C, Liou B T, Yen S H, Kuo Y K. Improvement in output power of a 460 nm InGaN light-emitting diode using staggered quantum well. Journal of Applied Physics, 2010, 108(6): 063107

    [4] Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P, Wang G H. Enhancement of the light output power of InGaN/GaN lightemitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale. Journal of Applied Physics, 2008, 103(1): 014314

    [5] Lee J H, Lee D Y, Oh B W, Lee J H. Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate. IEEE Transactions on Electron Devices, 2010, 57(1): 157-163

    [6] Tansu N, Mawst L J. Current injection efficiency of InGaAsN quantum-well lasers. Journal of Applied Physics, 2005, 97(5): 054502

    [7] Choi S, Ji M H, Kim J, Kim H J, Satter M M, Yoder P D, Ryou J H, Dupuis R D, Fischer A M, Ponce F A. Efficiency droop due to electron spill-over and limited hole injection in III-nitride visible light-emitting diodes employing lattice-matched InAlN electron blocking layers. Applied Physics Letters, 2012, 101(16): 161110

    [8] Hori A, Yasunaga D, Satake A, Fujiwara K. Temperature and injection current dependence of electroluminescence intensity in green and blue InGaN single-quantum-well light-emitting diodes. Journal of Applied Physics, 2003, 93(6): 3152-3157

    [9] Wang C H, Chang S P, Ku P H, Li J C, Lan Y P, Lin C C, Yang H C, Kuo H C, Lu T C, Wang S C, Chang C Y. Hole transport improvement in InGaN/GaN light-emitting diodes by gradedcomposition multiple quantum barriers. Applied Physics Letters, 2011, 99(17): 171106

    [10] Otsuji N, Fujiwara K, Sheu J K. Electroluminescence efficiency of blue InGaN/GaN quantum-well diodes with and without an n-InGaN electron reservoir layer. Journal of Applied Physics, 2006, 100(11): 113105

    [11] Zhao H P, Liu G Y, Arif R A, Tansu N. Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes. Solid-State Electronics, 2010, 54(10): 1119-1124

    [12] Zhao H P, Liu G Y, Zhang J, Arif R A, Tansu R. Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes. Journal of Display Technology, 2013, 9(4): 212-225

    [13] Titkov I E, Sannikov D A, Park Y M, Son J K. Blue light emitting diode internal and injection efficiency. AIP Advances, 2012, 2(3): 032117

    [14] Xu L F, Patel D, Menoni C S, Yeh J Y, Mawst L J, Tansu N. Experimental evidence of the impact of nitrogen on carrier capture and escape times in InGaAsN/GaAs single quantum well. IEEE Photonics Journal, 2012, 4(6): 2262-2271

    [15] Tansu N, Mawst L J. The role of hole leakage in 1300-nm InGaAsN quantum-well lasers. Applied Physics Letters, 2003, 82(10): 1500-1502

    [16] Chang J Y, Tsai M C, Kuo Y K. Advantages of blue InGaN lightemitting diodes with AlGaN barriers. Optics Letters, 2010, 35(9): 1368-1370

    [17] Liu G Y, Zhang J, Tan C K, Tansu N. Efficiency-droop suppression by using large-bandgap AlGaInN thin barrier layers in InGaN quantum-well light-emitting diodes. IEEE Photonics Journal, 2013, 5(2): 2201011

    [18] Delaney K T, Rinke P, Van de Walle C G. Auger recombination rates in nitrides from first principles. Applied Physics Letters, 2009, 94(19): 191109

    [19] Tan C K, Zhang J, Li X H, Liu G Y, Tayo B O, Tansu N. Firstprinciple electronic properties of dilute-As GaNAs alloy for visible light emitters. Journal of Display Technology, 2013, 9(4): 272-279

    [20] Kuo Y K, Chang J Y, Tsai M C. Enhancement in hole-injection efficiency of blue InGaN light-emitting diodes from reduced polarization by some specific designs for the electron blocking layer. Optics Letters, 2010, 35(19): 3285-3287

    [21] Kuo Y K, Tsai M C, Yen S H. Numerical simulation of blue InGaN light-emitting diodes with polarization-matched AlGaInN electronblocking layer and barrier layer. Optics Communications, 2009, 282(21): 4252-4255

    [22] Zhang Y Y, Yin Y A. Performance enhancement of blue lightemitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer. Applied Physics Letters, 2011, 99(22): 221103

    [23] Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures. Applied Physics Letters, 2009, 94(6): 061116-1-061116-3

    [24] Liou B T, Tsai M C, Liao C T, Yen S H, Kuo Y K. Numerical investigation of blue InGaN light-emitting diodes with staggered quantum wells. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7211: 72111D-1-72111D-8

    [25] Jain S C, Willander M, Narayan J, Overstraeten R V. III-nitrides: growth, characterization, and properties. Journal of Applied Physics, 2000, 87(3): 965-1006

    [26] Yen S H, Kuo Y K. Polarization-dependent optical characteristics of violet InGaN laser diodes. Journal of Applied Physics, 2008, 103(10): 103115-1-103115-6

    [27] Kuo Y K, Yen S H, Wang Y W. Simulation of deep ultraviolet light-emitting diodes. Proceedings of the Society for Photo-Instrumentation Engineers, 2007, 6669: 66691J

    [28] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, SchaffWJ, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN hetero-structures. Journal of Applied Physics, 2000, 87(1): 334-344

    [29] Fiorentini V, Bernardini F, Ambacher O. Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures. Applied Physics Letters, 2002, 80(7): 1204-1206

    [30] Ridley B K, Schaff W J, Eastman L F. Theoretical model for polarization superlattices: Energy levels and intersubband transitions. Journal of Applied Physics, 2003, 94(6): 3972-3978

    [31] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, 2003, 94(6): 3675-3696

    [32] Vurgaftman I, Meyer J R, Ram-Mohan L R. Band parameters for III-V compound semiconductors and their alloys. Journal of Applied Physics, 2001, 89(11): 5815-5875

    [33] Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Sota T. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Applied Physics Letters, 1998, 73(14): 2006-2008

    [34] Feezell D F, Speck J S, DenBaars S P, Nakamura S. Semipolar (20-2-1) InGaN/GaN light-emitting diodes for high-efficiency solidstate lighting. Journal of Display Technology, 2013, 9(4): 190-198

    [35] Farrell R M, Haeger D A, Fujito K, DenBaars S P, Nakamura S, Speck J S. Morphological evolution of InGaN/GaN light-emitting diodes grown on free-standing m-plane GaN substrates. Journal of Applied Physics, 2013, 113(6): 063504

    [36] Zhang J, Tansu N. Optical gain and laser characteristics of InGaN quantum wells on ternary InGaN substrates. IEEE Photonics Journal, 2013, 5(2): 2600111

    [37] Zhao H P, Liu G Y, Zhang J, Poplawsky J D, Dierolf V, Tansu N. Approaches for high internal quantum efficiency green InGaN lightemitting diodes with large overlap quantum wells. Optics Express, 2011, 19(Suppl 4): A991-A1007

    Wu TIAN, Xiong HUI, Yang LI, Jiangnan DAI, Yanyan FANG, Zhihao WU, Changqing CHEN. Improvement of blue InGaN light-emitting diodes with gradually increased barrier heights from n- to p-layers[J]. Frontiers of Optoelectronics, 2013, 6(4): 429
    Download Citation