• Photonics Research
  • Vol. 13, Issue 6, 1485 (2025)
Jianwei Chen1,2, Wei Shi2, Jianzheng Feng2, Jianlin Wang2..., Sheng Liu3 and Yiming Li2,*|Show fewer author(s)
Author Affiliations
  • 1Harbin Institute of Technology, Harbin 150001, China
  • 2Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen 518055, China
  • 3Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87106, USA
  • show less
    DOI: 10.1364/PRJ.547778 Cite this Article Set citation alerts
    Jianwei Chen, Wei Shi, Jianzheng Feng, Jianlin Wang, Sheng Liu, Yiming Li, "Upsampled PSF enables high accuracy 3D superresolution imaging with sparse sampling rate," Photonics Res. 13, 1485 (2025) Copy Citation Text show less
    References

    [1] L. Schermelleh, A. Ferrand, T. Huser. Super-resolution microscopy demystified. Nat. Cell Biol., 21, 72-84(2019).

    [2] M. Lelek, M. T. Gyparaki, G. Beliu. Single-molecule localization microscopy. Nat. Rev. Methods Prim., 1, 39(2021).

    [3] K. Xu, H. P. Babcock, X. Zhuang. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat. Methods, 9, 185-188(2012).

    [4] A. Dani, B. Huang, J. Bergan. Superresolution imaging of chemical synapses in the brain. Neuron, 68, 843-856(2010).

    [5] J. Ries, C. Kaplan, E. Platonova. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat. Methods, 9, 582-584(2012).

    [6] B. Huang, W. Wang, M. Bates. Three-dimensional super-resolution reconstruction microscopy. Science, 319, 810-813(2008).

    [7] S. J. Holden, T. Pengo, K. L. Meibom. High throughput 3D super-resolution microscopy reveals Caulobacter crescentus in vivo Z-ring organization. Proc. Natl. Acad. Sci. USA, 111, 4566-4571(2014).

    [8] D. Mahecic, D. Gambarotto, K. M. Douglass. Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat. Methods, 17, 726-733(2020).

    [9] A. Beghin, A. Kechkar, C. Butler. Localization-based super-resolution imaging meets high-content screening. Nat. Methods, 14, 1184-1190(2017).

    [10] S. Fu, W. Shi, T. Luo. Field-dependent deep learning enables high-throughput whole-cell 3D super-resolution imaging. Nat. Methods, 20, 459-468(2023).

    [11] A. E. S. Barentine, Y. Lin, E. M. Courvan. An integrated platform for high-throughput nanoscopy. Nat. Biotechnol., 41, 1549-1556(2023).

    [12] R. E. Thompson, D. R. Larson, W. W. Webb. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J., 82, 2775-2783(2002).

    [13] K. I. Mortensen, L. S. Churchman, J. A. Spudich. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods, 7, 377-381(2010).

    [14] H. Chang, S. Fu, Y. Li. Optimal sampling rate for 3D single molecule localization. Opt. Express, 31, 39703-39716(2023).

    [15] S. R. P. Pavani, M. A. Thompson, J. S. Biteen. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA, 106, 2995-2999(2009).

    [16] S. Prasad. Rotating point spread function via pupil-phase engineering. Opt. Lett., 38, 585-587(2013).

    [17] Y. Shechtman, S. J. Sahl, A. S. Backer. Optimal point spread function design for 3D imaging. Phys. Rev. Lett., 113, 133902(2014).

    [18] S. Hell, E. H. K. Stelzer. Fundamental improvement of resolution with a 4Pi-confocal fluorescence TPM. Opt. Commun., 93, 277-282(1992).

    [19] Y. Li, E. Buglakova, Y. Zhang. Accurate 4Pi single-molecule localization using an experimental PSF model. Opt. Lett., 45, 3765-3768(2020).

    [20] H. P. Babcock, X. Zhuang. Analyzing single molecule localization microscopy data using cubic splines. Sci. Rep., 7, 552(2017).

    [21] Y. Li, M. Mund, P. Hoess. Real-time 3D single-molecule localization using experimental point spread functions. Nat. Methods, 15, 367-369(2018).

    [22] S. Liu, J. Chen, J. Hellgoth. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat. Methods, 21, 1082-1093(2024).

    [23] T. A. Laurence, B. A. Chromy. Efficient maximum likelihood estimator fitting of histograms. Nat. Methods, 7, 338-339(2010).

    [24] T. Liu, D. Li. Convergence of the BFGS-SQP method for degenerate problems. Numer. Funct. Anal. Optim., 28, 927-944(2007).

    [25] S. Stallinga, B. Rieger. Accuracy of the Gaussian point spread function model in 2D localization microscopy. Opt. Express, 18, 24461-24476(2010).

    [26] S. Fu, M. Li, L. Zhou. Deformable mirror based optimal PSF engineering for 3D super-resolution imaging. Opt. Lett., 47, 3031-3034(2022).

    [27] J. V. Thevathasan, M. Kahnwald, K. Cieśliński. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods, 16, 1045-1053(2019).

    [28] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation Theory(1993).

    [29] M. Leutenegger, R. Rao, R. A. Leitgeb. Fast focus field calculations. Opt. Express, 14, 11277-11291(2006).

    [30] M. E. Siemons, L. C. Kapitein, S. Stallinga. Axial accuracy in localization microscopy with 3D point spread function engineering. Opt. Express, 30, 28290-28300(2022).

    [31] https://zenodo.org/records/14938728. https://zenodo.org/records/14938728

    [32] https://github.com/Li-Lab-SUSTech/Up-sampled-PSF-modeling. https://github.com/Li-Lab-SUSTech/Up-sampled-PSF-modeling

    Jianwei Chen, Wei Shi, Jianzheng Feng, Jianlin Wang, Sheng Liu, Yiming Li, "Upsampled PSF enables high accuracy 3D superresolution imaging with sparse sampling rate," Photonics Res. 13, 1485 (2025)
    Download Citation