• Advanced Photonics Nexus
  • Vol. 3, Issue 5, 056007 (2024)
Ross Glyn MacDonald1,2, Alex Yakovlev2, and Victor Pacheco-Peña1,*
Author Affiliations
  • 1Newcastle University, School of Mathematics Statistics and Physics, United Kingdom
  • 2Newcastle University, School of Engineering, United Kingdom
  • show less
    DOI: 10.1117/1.APN.3.5.056007 Cite this Article Set citation alerts
    Ross Glyn MacDonald, Alex Yakovlev, Victor Pacheco-Peña, "Solving partial differential equations with waveguide-based metatronic networks," Adv. Photon. Nexus 3, 056007 (2024) Copy Citation Text show less
    References

    [1] M. Vajdi et al. A review on the COMSOL Multiphysics studies of heat transfer in advanced ceramics. J. Compos. Compd., 2, 35-44(2020).

    [2] I. H. Herron, M. R. Foster. Partial Differential Equations in Fluid Dynamics(2008).

    [3] D. M. Pozar. Microwave Engineering, 756(2011).

    [4] L. N. Chang et al. Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D, 65, 125027(2002).

    [5] B. Fornberg. Generation of finite difference formulas on arbitrarily spaced grids. Math. Comput., 51, 699(1988).

    [6] Z. Bofang. The Finite Element Method(2018).

    [7] Z. Cendes, D. Shenton. Adaptive mesh refinement in the finite element computation of magnetic fields. IEEE Trans. Magn., 21, 1811-1816(1985).

    [8] M. Blatt, P. Bastian. On the generic parallelisation of iterative solvers for the finite element method. Int. J. Comput. Sci. Eng., 4, 56(2008).

    [9] S. Lew et al. Accuracy and run-time comparison for different potential approaches and iterative solvers in finite element method based EEG source analysis. Appl. Numer. Math., 59, 1970-1988(2009).

    [10] M. Pellissetti, R. Ghanem. Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv. Eng. Softw., 31, 607-616(2000).

    [11] H. Takesue et al. Large-scale coherent Ising machine. J. Phys. Soc. Japan, 88, 061014(2019).

    [12] F. Zangeneh-Nejad et al. Analogue computing with metamaterials. Nat. Rev. Mater., 6, 207-225(2020).

    [13] T. Knightley, A. Yakovlev, V. Pacheco‐Peña. Neural network design of multilayer metamaterial for temporal differentiation. Adv. Opt. Mater., 11, 2202351(2022).

    [14] Y. Zhu et al. Silicon photonic neuromorphic accelerator using integrated coherent transmit-receive optical sub-assemblies. Optica, 11, 583(2024).

    [15] X. Guo et al. Short-term prediction for chaotic time series based on photonic reservoir computing using VCSEL with a feedback loop. Photonics Res., 12, 1222(2024).

    [16] J. Garofolo, B. Wu. Photonic analog signal processing and neuromorphic computing [Invited]. Chinese Opt. Lett., 22, 032501(2024).

    [17] H. Ouyang et al. Parallel edge extraction operators on chip speed up photonic convolutional neural networks. Opt. Lett., 49, 838(2024).

    [18] Z. Zhao et al. On-chip silicon photonic micro-ring processor lights up optical image encryption. Opt. Lett., 49, 3556(2024).

    [19] X. Wang et al. Integrated photonic encoder for low power and high-speed image processing. Nat. Commun., 15, 1-13(2024).

    [20] N. Mohammadi Estakhri, B. Edwards, N. Engheta. Inverse-designed metastructures that solve equations. Science, 363, 1333-1338(2019).

    [21] A. Silva et al. Performing mathematical operations with metamaterials. Science, 343, 160-163(2014).

    [22] A. Momeni, K. Rouhi, R. Fleury. Switchable and simultaneous spatiotemporal analog computing with computational graphene-based multilayers. Carbon N. Y., 186, 599-611(2022).

    [23] R. G. MacDonald, A. Yakovlev, V. Pacheco-Peña. Time derivatives via interconnected waveguides. Sci. Rep., 13, 13126(2023).

    [24] B. T. Swartz et al. Broadband and large-aperture metasurface edge encoders for incoherent infrared radiation. Sci. Adv., 10, 1-8(2024).

    [25] V. Nikkhah et al. Inverse-designed low-index-contrast structures on a silicon photonics platform for vector–matrix multiplication. Nat. Photonics, 18, 501-508(2024).

    [26] F. Zangeneh-Nejad, R. Fleury. Topological analog signal processing. Nat. Commun., 10, 2058(2019).

    [27] T. Zhu et al. Plasmonic computing of spatial differentiation. Nat. Commun., 8, 15391(2017).

    [28] A. Pors, M. G. Nielsen, S. I. Bozhevolnyi. Analog computing using reflective plasmonic metasurfaces. Nano Lett., 15, 791-797(2015).

    [29] F. Zangeneh-Nejad, R. Fleury. Performing mathematical operations using high-index acoustic metamaterials. New J. Phys., 20, 073001(2018).

    [30] N. K. Berger et al. Temporal differentiation of optical signals using a phase-shifted fiber Bragg grating. Opt. Express, 15, 371(2007).

    [31] J. Dong et al. Compact, flexible and versatile photonic differentiator using silicon Mach-Zehnder interferometers. Opt. Express, 21, 7014(2013).

    [32] S. Zarei, A. Khavasi. Realization of optical logic gates using on-chip diffractive optical neural networks. Sci. Rep., 12, 15747(2022).

    [33] Z. Lv, P. Liu, Y. Pei. Temporal acoustic wave computational metamaterials. Appl. Phys. Lett., 117, 131902(2020).

    [34] G. Ptitcyn, M. S. Mirmoosa, S. A. Tretyakov. Time-modulated meta-atoms. Phys. Rev. Res., 1, 023014(2019).

    [35] E. Galiffi et al. Photonics of time-varying media. Adv. Photonics, 4(2022).

    [36] V. Pacheco-Peña, N. Engheta. Antireflection temporal coatings. Optica, 7, 323(2020).

    [37] V. Pacheco-Peña, N. Engheta. Temporal aiming. Light Sci. Appl., 9, 129(2020).

    [38] V. Pacheco-Peña et al. Holding and amplifying electromagnetic waves with temporal non-Foster metastructures(2023).

    [39] G. Castaldi et al. Multiple actions of time-resolved short-pulsed metamaterials. Appl. Phys. Lett., 122, 021701(2023).

    [40] G. Kron. Electric circuit models of partial differential equations. Electr. Eng., 67, 672-684(1948).

    [41] Y. D. Save, H. Narayanan, S. B. Patkar. Solution of partial differential equations by electrical analogy. J. Comput. Sci., 2, 18-30(2011).

    [42] S. Sun et al. Induced homomorphism: Kirchhoff’s law in photonics. Nanophotonics, 10, 1711-1721(2021).

    [43] J. Ye et al. Reconfigurable application-specific photonic integrated circuit for solving partial differential equations. J. Nanophotonics, 13, 1-22(2022).

    [44] J. Anderson et al. Virtualizing a post-Moore’s law analog mesh processor: the case of a photonic PDE accelerator. ACM Trans. Embedded Comput. Syst., 22, 1-26(2023).

    [45] T. Holmgaard et al. Dielectric-loaded plasmonic waveguide-ring resonators. Opt. Express, 17, 2968(2009).

    [46] S.-W. Chen, K. A. Zaki. Dielectric ring resonators loaded in waveguide and on substrate. IEEE Trans. Microw. Theory Tech., 39, 2069-2076(1991).

    [47] E. Feigenbaum, M. Orenstein. Perfect 4-way splitting in nano plasmonic X-junctions. Opt. Express, 15, 17948(2007).

    [48] E. Feigenbaum, H. A. Atwater. Dielectric based resonant guided wave networks. Opt. Express, 20, 10674(2012).

    [49] N. Engheta. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science, 317, 1698-1702(2007).

    [50] Y. Li et al. Waveguide metatronics: lumped circuitry based on structural dispersion. Sci. Adv., 2, 1-8(2016).

    [51] W. Sun et al. Impedance matching via ultrathin metatronic layer assisted by Smith Chart.. Opt. Express, 30, 25567-25580(2022).

    [52] Y. Li, I. Liberal, N. Engheta. Dispersion synthesis with multi-ordered metatronic filters. Opt. Express, 25, 1937(2017).

    [53] N. Liu et al. Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett., 13, 142-147(2013).

    [54] D. Dregely et al. Imaging and steering an optical wireless nanoantenna link. Nat. Commun., 5, 4354(2014).

    [55] F. Monticone, N. M. Estakhri, A. Alù. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett., 110, 203903(2013).

    [56] M. Koivurova et al. Metamaterials designed for enhanced ENZ properties. New J. Phys., 22, 093054(2020).

    [57] Z. Zhou, Y. Li. N -port equal/unequal-split power dividers using epsilon-near-zero metamaterials. IEEE Trans. Microw. Theory Tech., 69, 1529-1537(2021).

    [58] V. Pacheco-Peña et al. Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna. Appl. Phys. Lett., 105, 243503(2014).

    [59] M. Miscuglio et al. Approximate analog computing with metatronic circuits. Commun. Phys., 4, 196(2021).

    [60] T. V. Teperik et al. Huygens-Fresnel principle for surface plasmons. Opt. Express, 17, 17483(2009).

    [61] B. Kapralos, M. Jenkin, E. Milios. Acoustical diffraction modeling utilizing the Huygens-Fresnel principle, 2005, 39-44(2005).

    [62] G. Liebmann. Solution of partial differential equations with a resistance network analogue. Br. J. Appl. Phys., 1, 92-103(1950).

    [63] A. Chakrabarti, A. K. Nandakumaran, P. S. Datti et al. Heat equation. Partial Differential Equations, 216-251(2020).

    [64] A. Yakovlev, V. Pacheco‐Peña. Enabling high‐speed computing with electromagnetic pulse switching. Adv. Mater. Technol., 5, 2000796(2020).

    [65] A. Adamatzky, V. Pacheco-Peña, A. Yakovlev. Computing with square electromagnetic pulses. in Handbook of Unconventional Computing, 465-492(2021).

    [66] A. Ventisei, A. Yakovlev, V. Pacheco‐Peña. Exploiting petri nets for graphical modelling of electromagnetic pulse switching operations. Adv. Theory Simul., 5, 2100429(2021).

    [67] G. Razinskas, P. Biagioni, B. Hecht. Limits of Kirchhoff’s laws in plasmonics. Sci. Rep., 8, 1921(2018).

    [68] Y. Li, I. Liberal, N. Engheta. Metatronic analogues of the Wheatstone bridge. J. Opt. Soc. Am. B, 33, A72(2016).

    [69] S. Das. Microwave Engineering(2014).

    [70] R. G. MacDonald, A. Yakovlev, V. Pacheco-Peña. Amplitude‐controlled electromagnetic pulse switching using waveguide junctions for high‐speed computing processes. Adv. Intell. Syst., 4, 2200137(2022).

    [71] S. Mazumder. The finite difference method. Numer. Methods Partial Differential Equations M, 51-101(2016).

    [72] L. Burstein. PDE Toolbox Primer for Engineering Applications with MATLAB® Basics, 383(2022).

    [73] Y. W. Kwon, H. Bang(2018).

    [74] U. Basu. Explicit finite element perfectly matched layer for transient three-dimensional elastic waves. Int. J. Numer. Methods Eng., 77, 151-176(2009).

    [75] T. Wang et al. Equivalent perfect magnetic conductor based on epsilon-near-zero media. Appl. Phys. Lett., 104, 211904(2014).

    [76] F. R. Quintela et al. A general approach to Kirchhoff’s laws. IEEE Trans. Educ., 52, 273-278(2009).

    [77] S. K. Ashour, M. A. Abdel-Hameed. Approximate skew normal distribution. J. Adv. Res., 1, 341-350(2010).

    Ross Glyn MacDonald, Alex Yakovlev, Victor Pacheco-Peña, "Solving partial differential equations with waveguide-based metatronic networks," Adv. Photon. Nexus 3, 056007 (2024)
    Download Citation