• Chinese Journal of Lasers
  • Vol. 51, Issue 10, 1002319 (2024)
Kunpeng Tan1, Jiafeng Tang1, Zhibin Zhao1、*, Chenxi Wang1, Xingwu Zhang1, Weifeng He2, and Xuefeng Chen1
Author Affiliations
  • 1Institute of Aero-Engine, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 2National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University, Xi’an 710038, Shaanxi, China
  • show less
    DOI: 10.3788/CJL240430 Cite this Article Set citation alerts
    Kunpeng Tan, Jiafeng Tang, Zhibin Zhao, Chenxi Wang, Xingwu Zhang, Weifeng He, Xuefeng Chen. Powder‑Spreading Defect Detection in Laser Powder Bed Fusion Based on Large Vision Model[J]. Chinese Journal of Lasers, 2024, 51(10): 1002319 Copy Citation Text show less
    References

    [1] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [2] Kumar M B, Sathiya P. Methods and materials for additive manufacturing: a critical review on advancements and challenges[J]. Thin-Walled Structures, 159, 107228(2021).

    [3] Chowdhury S, Yadaiah N, Prakash C et al. Laser powder bed fusion: a state-of-the-art review of the technology, materials, properties & defects, and numerical modelling[J]. Journal of Materials Research and Technology, 20, 2109-2172(2022).

    [4] Zhao Z B, Wang C X, Zhang X W et al. Research progress and challenges in process intelligent monitoring of laser powder bed fusion additive manufacturing[J]. Journal of Mechanical Engineering, 59, 253-276(2023).

    [5] McCann R, Obeidi M A, Hughes C et al. In-situ sensing, process monitoring and machine control in laser powder bed fusion: a review[J]. Additive Manufacturing, 45, 102058(2021).

    [6] Taherkhani K, Ero O, Liravi F et al. On the application of in situ monitoring systems and machine learning algorithms for developing quality assurance platforms in laser powder bed fusion: a review[J]. Journal of Manufacturing Processes, 99, 848-897(2023).

    [7] Yao X J, Wang J W, Yang Y C et al. Review on defect formation mechanisms and control methods of metallic components during laser additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402802(2022).

    [8] Zhang Y J, Yan W T. Applications of machine learning in metal powder-bed fusion in-process monitoring and control: status and challenges[J]. Journal of Intelligent Manufacturing, 34, 2557-2580(2023).

    [9] Sarkon G K, Safaei B, Kenevisi M S et al. State-of-the-art review of machine learning applications in additive manufacturing; from design to manufacturing and property control[J]. Archives of Computational Methods in Engineering, 29, 5663-5721(2022).

    [10] Su J L, Chen L Q, Tan C L et al. Progress in machine-learning-assisted process optimization and novel material development in additive manufacturing[J]. Chinese Journal of Lasers, 49, 1402101(2022).

    [11] Scime L, Beuth J. A multi-scale convolutional neural network for autonomous anomaly detection and classification in a laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 24, 273-286(2018).

    [12] Zhang Y, Safdar M, Xie J R et al. A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management[J]. Journal of Intelligent Manufacturing, 34, 3305-3340(2023).

    [13] Yang L M, Zhou F Q. Survey of scratch detection technology based on machine vision[J]. Laser & Optoelectronics Progress, 59, 1415009(2022).

    [14] Open AI, Achiam J, Adler S et al. GPT-4 technical report[EB/OL]. http:∥arxiv.org/abs/2303.08774

    [15] Moenck K, Wendt A, Prünte P et al. Industrial segment anything: a case study in aircraft manufacturing, intralogistics, maintenance, repair, and overhaul[EB/OL]. http:∥arxiv.org/abs/2307.12674

    [16] Kirillov A, Mintun E, Ravi N et al. Segment anything[EB/OL]. http:∥arxiv.org/abs/2304.02643

    [17] Hu B Z, Gao B, Tan C et al. Segment anything in defect detection[EB/OL]. http:∥arxiv.org/abs/2311.10245

    [18] Chen Z W, Wong W K, Zhong Z F et al. Effective transfer of pretrained large visual model for fabric defect segmentation via specifc knowledge injection[EB/OL]. http:∥arxiv.org/abs/2306.16186v1

    [19] Ji W, Li J J, Bi Q et al. Segment anything is not always perfect: an investigation of SAM on different real-world applications[EB/OL]. http:∥arxiv.org/abs/2304.05750

    [20] Zhang K D, Liu D. Customized segment anything model for medical image segmentation[EB/OL]. http:∥arxiv.org/abs/2304.13785

    [21] Chen K Y, Liu C Y, Chen H et al. RSPrompter: learning to prompt for remote sensing instance segmentation based on visual foundation model[EB/OL]. http:∥arxiv.org/abs/2306.16269

    [22] He K M, Chen X L, Xie S N et al. Masked autoencoders are scalable vision learners[C], 15979-15988(2022).

    [23] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth[EB/OL], 16-16. https:∥arxiv.org/abs/2010.11929

    [24] Hu J E, Shen Y L, Wallis P et al. LoRA: low-rank adaptation of large language models[EB/OL]. http:∥arxiv.org/abs/2106.09685

    [25] Wu J D, Ji W, Liu Y P et al. Medical SAM adapter: adapting segment anything model for medical image segmentation[EB/OL]. http:∥arxiv.org/abs/2304.12620

    [26] Zhang C N, Puspitasari F D, Zheng S et al. A survey on segment anything model (SAM): vision foundation model meets prompt engineering[EB/OL]. http:∥arxiv.org/abs/2306.06211

    [27] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[EB/OL]. http:∥arxiv.org/abs/1512.03385

    [28] Mannor S, Peleg D, Rubinstein R. The cross entropy method for classification[C], 561-568(2005).

    [29] Lin T Y, Goyal P, Girshick R et al. Focal loss for dense object detection[EB/OL]. http:∥arxiv.org/abs/1708.02002

    [30] Li X Y, Sun X F, Meng Y X et al. Dice loss for data-imbalanced NLP tasks[EB/OL]. http:∥arxiv.org/abs/1911.02855v3

    [31] Chen L C, Papandreou G, Schroff F et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. http:∥arxiv.org/abs/1706.05587v3

    [32] Ronneberger O, Fischer P, Brox T, Navab N, Hornegger J, Wells W M et al. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    Kunpeng Tan, Jiafeng Tang, Zhibin Zhao, Chenxi Wang, Xingwu Zhang, Weifeng He, Xuefeng Chen. Powder‑Spreading Defect Detection in Laser Powder Bed Fusion Based on Large Vision Model[J]. Chinese Journal of Lasers, 2024, 51(10): 1002319
    Download Citation