• High Power Laser and Particle Beams
  • Vol. 33, Issue 8, 081001 (2021)
Ziqiang Li1、2, Xinyang Li1、2、*, Zeyu Gao1、2, and Qiwang Jia1、2
Author Affiliations
  • 1Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China
  • 2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • show less
    DOI: 10.11884/HPLPB202133.210158 Cite this Article
    Ziqiang Li, Xinyang Li, Zeyu Gao, Qiwang Jia. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001 Copy Citation Text show less
    References

    [2] Pomohaci R, Oudmaijer R D, Goodwin S P. A pilot survey of the binarity of Massive Young Stellar Objects with K-band adaptive optics[J]. Monthly Notices of the Royal Astronomical Society, 484, 226-238(2019).

    [3] Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 8, 110(2019).

    [4] Sun Licheng, Guo Yading, Shao Chongfeng, et al. 10.8 kW, 2.6 times diffraction limited laser based on a continuous wave Nd: YAG oscillator and an extra-cavity adaptive optics system[J]. Optics Letters, 43, 4160-4163(2018).

    [6] Toselli I, Gladysz S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 28, 17347-17361(2020).

    [7] Azimipour M, Migacz J V, Zawadzki R J, et al. Functional retinal imaging using adaptive optics swept-source OCT at 1.6 MHz[J]. Optica, 6, 300-303(2019).

    [8] Zhang Yudong, Rao Changhui, Li Xinyang. Adaptive optics laser control[M]. Beijing: National Defense Industry Press, 2016

    [10] Goodfellow I, Bengio Y, Courville A, et al. Deep learning[M]. Zhao Shenjian, Li Yujun, Fu Tianfan, et al, trans. Beijing: Posts & Telecom Press, 2017).

    [11] McCulloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity[J]. The Bulletin of Mathematical Biophysics, 5, 115-133(1943).

    [12] Hebb D O. The ganization of behavi: a neuropsychological they[M]. New Yk: Wiley, 1949.

    [13] Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 65, 386-408(1958).

    [14] Minsky M, Papert S A. Perceptrons: an introduction to computational geometry[M]. Cambridge: MIT Press, 2017.

    [15] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 323, 533-536(1986).

    [16] Gonsalves R A. Phase retrieval and diversity in adaptive optics[J]. Optical Engineering, 21, 215829(1982).

    [17] Carrano C J, Olivier S S, Brase J M, et al. Phase retrieval techniques f adaptive optics[C]Proceedings Volume 3353, Adaptive Optical System Technologies. Kona, 1998: 658667.

    [18] Angel J R P, Wizinowich P, Lloyd-Hart M, et al. Adaptive optics for array telescopes using neural-network techniques[J]. Nature, 348, 221-224(1990).

    [19] Lloyd-Hart M, Wizinowich P, McLeod B, et al. First results of an on-line adaptive optics system with atmospheric wavefront sensing by an artificial neural network[J]. The Astrophysical Journal, 390, L41-L44(1992).

    [20] Sandler D G, Barrett T K, Palmer D A, et al. Use of a neural network to control an adaptive optics system for an astronomical telescope[J]. Nature, 351, 300-302(1991).

    [21] Barrett T K, Sandler D G. Artificial neural network for the determination of Hubble Space Telescope aberration from stellar images[J]. Applied Optics, 32, 1720-1727(1993).

    [22] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 60, 84-90(2017).

    [23] Ma Huimin, Liu Haiqiu, Qiao Yan, et al. Numerical study of adaptive optics compensation based on Convolutional Neural Networks[J]. Optics Communications, 433, 283-289(2019).

    [24] Lecun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 86, 2278-2324(1998).

    [25] Wu Yu, Guo Youming, Bao Hua, et al. Sub-millisecond phase retrieval for phase-diversity wavefront sensor[J]. Sensors, 20, 4877(2020).

    [26] Ju Guohao, Qi Xin, Ma Hongcai, et al. Feature-based phase retrieval wavefront sensing approach using machine learning[J]. Optics Express, 26, 31767-31783(2018).

    [27] Li Zhaokun, Zhao Xiaohui. BP artificial neural network based wave front correction for sensor-less free space optics communication[J]. Optics Communications, 385, 219-228(2017).

    [28] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture f computer vision[C]2016 IEEE Conference on Computer Vision Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 28182826.

    [29] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [30] Nishizaki Y, Valdivia M, Horisaki R, et al. Deep learning wavefront sensing[J]. Optics Express, 27, 240-251(2019).

    [31] Tan Mingxing, Le Q V. Efficient: rethinking model scaling f convolutional neural wks[C]Proceedings of the International Conference on Machine Learning, ICML 2019. Long Beach, 2019: 61056114.

    [32] Wang Minghao, Guo Wen, Yuan Xiuhua. Single-shot wavefront sensing with deep neural networks for free-space optical communications[J]. Optics Express, 29, 3465-3478(2021).

    [33] Hoenders B J. On the solution of the phase retrieval problem[J]. Journal of Mathematical Physics, 16, 1719-1725(1975).

    [34] Kim W, Hayes M H. Phase retrieval using two Fourier-transform intensities[J]. Journal of the Optical Society of America A, 7, 441-449(1990).

    [35] Diez C A, Shao F, Bille J. Pyramid and Hartmann-Shack wavefront sensor with artificial neural network for adaptive optics[J]. Journal of Modern Optics, 55, 683-689(2008).

    [36] Li Ziqiang, Li Xinyang, Liang Rongguang. Random two-frame interferometry based on deep learning[J]. Optics Express, 28, 24747-24760(2020).

    [37] Montera D A, Welsh B M, Roggemann M C, et al. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation[J]. Applied Optics, 35, 5747-5757(1996).

    [38] Mello A T, Kanaan A, Guzman D, et al. Artificial neural networks for centroiding elongated spots in Shack-Hartmann wavefront sensors[J]. Monthly Notices of the Royal Astronomical Society, 440, 2781-2790(2014).

    [39] Berdja A, Santibañez E G, Guzman C D. Experimental results on using artificial neural wks f accurate centroiding in ShackHartmann wavefront senss with elongated spots[C]Proceedings Volume 9909, Adaptive Optics Systems V. Edinburgh: SPIE, 2016: 99093Y.

    [40] Gilles L, Ellerbroek B L. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing[J]. Optics Letters, 33, 1159-1161(2008).

    [41] Michau V, Conan J M, Fusco T, et al. ShackHartmann wavefront sensing with extended sources[C]Proceedings Volume 6303, Atmospheric Optical Modeling, Measurement, Simulation II. San Diego: SPIE, 2006: 63030B.

    [42] Li Ziqiang, Li Xinyang. Centroid computation for Shack-Hartmann wavefront sensor in extreme situations based on artificial neural networks[J]. Optics Express, 26, 31675-31692(2018).

    [43] Ellerbroek B L. First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes[J]. Journal of the Optical Society of America A, 11, 783-805(1994).

    [44] Fusco T, Conan J M, Rousset G, et al. Optimal wave-front reconstruction strategies for multiconjugate adaptive optics[J]. Journal of the Optical Society of America A, 18, 2527-2538(2001).

    [45] Vidal F, Gendron E, Rousset G. Tomography approach for multi-object adaptive optics[J]. Journal of the Optical Society of America A, 27, A253-A264(2010).

    [46] Guo Hong, Korablinova N, Ren Qiushi, et al. Wavefront reconstruction with artificial neural networks[J]. Optics Express, 14, 6456-6462(2006).

    [47] Osborn J, De Cos Juez F J, Guzman D, et al. Using artificial neural networks for open-loop tomography[J]. Optics Express, 20, 2420-2434(2012).

    [48] de Cos Juez F J, Lasheras F S, Roqueñi N, et al. An ANN-based smart tomographic reconstructor in a dynamic environment[J]. Sensors, 12, 8895-8911(2012).

    [49] Guzman D, Mello A T, Osbn J, et al. Tomographic reconstruct f multiobject adaptive optics using artificial neural wks[C]Proceedings Volume 8447, Adaptive Optics Systems III. Amsterdam: SPIE, 2012: 844740.

    [50] Osborn J, Guzman D, de Cos Juez F J, et al. Open-loop tomography with artificial neural networks on CANARY: on-sky results[J]. Monthly Notices of the Royal Astronomical Society, 441, 2508-2514(2014).

    [51] Gonzalez-Gutiérrez C, Santos J D, Martinez-Zarzuela M, et al. Comparative study of neural network frameworks for the next generation of adaptive optics systems[J]. Sensors, 17, 1263(2017).

    [52] Gómez S L S, Gutiérrez C G, Rodríguez J D S, et al. Analysing the perfmance of a tomographic reconstruct with different neural wks framewks[C]Proceedings of the 16th International Conference on Intelligent Systems Design Applications (ISDA 2016). Pto: Springer, 2016: 10511060.

    [53] GonzalezGutiérrez C, SantosRodríguez J D, Díaz R Á F, et al. Using GPUs to speed up a tomographic reconstruct based on machine learning[C]Proceedings of the International Joint Conference SOCO''16CISIS''16ICEUTE''16. San Sebastián: Springer, 2016: 279289.

    [54] González-Gutiérrez C, Sánchez-Rodríguez M L, Calvo-Rolle J L, et al. Multi-GPU development of a neural networks based reconstructor for adaptive optics[J]. Complexity, 2018, 5348265(2018).

    [55] Gómez S L S, GonzálezGutiérrez C, Alonso E D, et al. Improving adaptive optics reconstructions with a deep learning approach[C]Proceedings of the 13th International Conference, HAIS 2018. Oviedo: Springer, 2018: 7483.

    [56] Hu Lejia, Hu Shuwen, Gong Wei, et al. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection[J]. Optics Express, 27, 33504-33517(2019).

    [57] Swanson R, Lamb M, Creia C, et al. Wavefront reconstruction prediction with convolutional neural wks[C]Proceedings Volume 10703, Adaptive Optics Systems VI. Austin, 2018: 107031F.

    [58] Ronneberger O, Fischer P, Brox T. U: convolutional wks f biomedical image segmentation[C]Proceedings of the 18th International Conference. Munich, 2015: 234241.

    [59] DuBose T B, Gardner D F, Watnik A T. Intensity-enhanced deep network wavefront reconstruction in Shack-Hartmann sensors[J]. Optics Letters, 45, 1699-1702(2020).

    [60] Hu Leijia, Hu Shuwen, Gong Wei, et al. Deep learning assisted Shack-Hartmann wavefront sensor for direct wavefront detection[J]. Optics Letters, 45, 3741-3744(2020).

    [61] Xu Zhiqiang, Wang Shuai, Zhao Mengmeng, et al. Wavefront reconstruction of a Shack-Hartmann sensor with insufficient lenslets based on an extreme learning machine[J]. Applied Optics, 59, 4768-4774(2020).

    [62] Jia Peng, Ma Mingyang, Cai Dongmei, et al. Compressive Shack–Hartmann wavefront sensor based on deep neural networks[J]. Monthly Notices of the Royal Astronomical Society, 503, 3194-3203(2021).

    Ziqiang Li, Xinyang Li, Zeyu Gao, Qiwang Jia. Review of wavefront sensing technology in adaptive optics based on deep learning[J]. High Power Laser and Particle Beams, 2021, 33(8): 081001
    Download Citation