• Chinese Journal of Lasers
  • Vol. 48, Issue 3, 0312001 (2021)
Baihong Li1、2, Zhiguang Xia1、2, Xiao Xiang2、3、*, Yaqing Jin2、3, Run'ai Quan2、3, Ruifang Dong2、3、**, Tao Liu2、3, and Shougang Zhang2、3
Author Affiliations
  • 1College of Sciences, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China
  • 2Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an, Shaanxi 710600, China
  • 3School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL202148.0312001 Cite this Article Set citation alerts
    Baihong Li, Zhiguang Xia, Xiao Xiang, Yaqing Jin, Run'ai Quan, Ruifang Dong, Tao Liu, Shougang Zhang. Experimental Method for Fast Measuring the Phase-matched Wavelengths of Entangled Photons by Wavelength-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(3): 0312001 Copy Citation Text show less
    References

    [1] Giovannetti V, Lloyd S, Maccone L. Quantum-enhanced positioning and clock synchronization[J]. Nature, 412, 417-419(2001). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000004000006000051000001&idtype=cvips&gifs=Yes

    [2] Nasr M B, Minaeva O, Goltsman G N et al. Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors[J]. Optics Express, 16, 15104-15108(2008).

    [3] Quan R, Dong R, Zhai Y et al. Simulation and realization of a second-order quantum-interference-based quantum clock synchronization at the femtosecond level[J]. Optics Letters, 44, 614-617(2019). http://d.wanfangdata.com.cn/periodical/13208aa5331bd0be2a5ba455c9bbca73

    [4] Hou F Y, Quan R N, Dong R F et al. Fiber-optic two-way quantum time transfer with frequency-entangled pulses[J]. Physical Review A, 100, 023849(2019). http://www.researchgate.net/publication/335485515_Fiber-optic_two-way_quantum_time_transfer_with_frequency-entangled_pulses

    [5] Yabushita A, Kobayashi T. Spectroscopy by frequency-entangled photon pairs[J]. Physical Review A, 69, 013806(2004). http://dx.doi.org/10.1103/physreva.69.013806

    [6] Kalashnikov D A, Pan Z Y, Kuznetsov A I et al. Quantum spectroscopy of plasmonic nanostructures[J]. Physical Review X, 4, 011049(2014). http://www.oalib.com/paper/3575468

    [7] Stassi R, De Liberato S, Garziano L et al. Spectral correlation measurements at the Hong-Ou-Mandel interference dip[J]. Physical Review A, 91, 013830(2015). http://arxiv.org/abs/1409.1616

    [8] Jin R B, Gerrits T, Fujiwara M et al. Spectrally resolved Hong-Ou-Mandel interference between independent photon sources[J]. Optics Express, 23, 28836-28848(2015).

    [9] Jin R B, Shimizu R. Extended Wiener-Khinchin theorem for quantum spectral analysis[J]. Optica, 5, 93-98(2018). http://arxiv.org/abs/1709.04837

    [10] Jin R B, Saito T, Shimizu R. Time-frequency duality of biphotons for quantum optical synthesis[J]. Physical Review Applied, 10, 034011(2018). http://www.researchgate.net/publication/327521281_Time-Frequency_Duality_of_Biphotons_for_Quantum_Optical_Synthesis

    [11] Xiang X, Xiang X, Dong R F et al. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state[J]. Optics Letters, 45, 2993-2996(2020). http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM32479441

    [12] Dong S, Zhang W, Huang Y D et al. Long-distance temporal quantum ghost imaging over optical fibers[J]. Scientific Reports, 6, 26022(2016). http://europepmc.org/articles/PMC4872159/

    [13] Yao X, Zhang W, Li H et al. Long-distance thermal temporal ghost imaging over optical fibers[J]. Optics Letters, 43, 759-762(2018). http://europepmc.org/abstract/MED/29443987

    [14] Yao X, Liu X, You L X et al. Quantum secure ghost imaging[J]. Physical Review A, 98, 063816(2018).

    [15] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [16] Bennett C H, Brassard G, Crépeau C et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels[J]. Physical Review Letters, 70, 1895(1993).

    [17] Howell J C, Bennink R S, Bentley S J et al. Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion[J]. Physical Review Letters, 92, 210403(2004). http://prola.aps.org/abstract/PRL/v92/i21/e210403

    [19] Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Physical Review A, 68, 042317(2003). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000003000011000004000001&idtype=cvips&gifs=Yes

    [20] Zhu A D, Xia Y, Fan Q B et al. Secure direct communication based on secret transmitting order of particles[J]. Physical Review A, 73, 022338(2006). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000006000003000025000001&idtype=cvips&gifs=Yes

    [21] Xia Y, Song H S. Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding[J]. Physics Letters A, 364, 117-122(2007). http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=24300209&site=ehost-live

    [22] Hum D S, Fejer M M. Quasi-phasematching[J]. Comptes Rendus Physique, 8, 180-198(2007).

    [23] Xu P, Zhu S N. Review article: quasi-phase-matching engineering of entangled photons[J]. AIP Advances, 2, 041401(2012). http://scitation.aip.org/content/aip/journal/adva/2/4/10.1063/1.4773457

    [24] Jin R B, Chen G Q, Laudenbach F et al. Thermal effects of the quantum states generated from the isomorphs of PPKTP crystal[J]. Optics & Laser Technology, 109, 222-226(2019). http://arxiv.org/abs/1810.02025v1

    [25] Kato K, Takaoka E. Sellmeier and thermo-optic dispersion formulas for KTP[J]. Applied Optics, 41, 5040-5044(2002). http://dx.doi.org/10.1364/ao.41.005040

    [26] H C Photonics[2020-06-03]. PPLN guide: overview [2020-06-03].https:∥www.hcphotonics.com/ppln-guide-overview..

    [27] Emanueli S, Arie A. Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4[J]. Applied Optics, 42, 6661-6665(2003). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-42-33-6661

    [28] Kalashnikov D A, Katamadze K G, Kulik S P. Controlling the spectrum of a two-photon field: inhomogeneous broadening due to a temperature gradient[J]. JETP Letters, 89, 224-228(2009). http://link.springer.com/article/10.1134/S0021364009050026

    [29] Jimenez G D, Garces V G. O'Donnell K A. Angular and temperature dependence of photon pair rates in spontaneous parametric down-conversion from a periodically poled crystal[J]. Physical Review A, 96, 023828(2017).

    [30] Kakuno S, Fujimura M, Suhara T. Wavelength tuning by temperature control in MgO-doped LiNbO3 waveguide quasi-phase-matching twin photon generation device[J]. Japanese Journal of Applied Physics, 51, 030201(2012).

    [31] Kolev V Z, Duering M W, Luther-Davies B. Corrections to refractive index data of stoichiometric lithium tantalate in the 5-6 μm range[J]. Optics Letters, 31, 2033-2035(2006). http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-13-2033

    [32] Deng L H, Gao X M, Cao Z S et al. Improvement to Sellmeier equation for periodically poled LiNbO3 crystal using mid-infrared difference-frequency generation[J]. Optics Communications, 268, 110-114(2006). http://www.sciencedirect.com/science/article/pii/S0030401806006778

    [33] Zhang Y, Hou F Y, Liu T et al. Generation and quantum characterization of miniaturized frequency entangled source in telecommunication band based on type-II periodically poled lithium niobate waveguide[J]. Acta Physica Sinica, 67, 144204(2018).

    [34] Solli D R, Chou J, Jalali B. Amplified wavelength-time transformation for real-time spectroscopy[J]. Nature Photonics, 2, 48-51(2008). http://www.nature.com/articles/nphoton.2007.253

    [35] Chandrasekharan H K, Izdebski F, Gris-Sánchez I et al. Multiplexed single-mode wavelength-to-time mapping of multimode light[J]. Nature Communications, 8, 14080(2017). http://europepmc.org/articles/PMC5288496/

    [36] Yang Y, Yang Y, Yang Y et al. Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs[J]. Optics Express, 28, 7488-7497(2020). http://www.researchgate.net/publication/339308936_inherent_resolution_limit_on_nonlocal_wavelength-to-time_mapping_with_entangled_photon_pairs

    [37] Wu J, You L, Chen S et al. Improving the timing jitter of a superconducting nanowire single-photon detection system[J]. Applied Optics, 56, 2195-2200(2017). http://www.ncbi.nlm.nih.gov/pubmed/28375312

    [38] Grice W P, Walmsley I A. Spectral information and distinguishability in type-II down-conversion with a broadband pump[J]. Physical Review A, 56, 1627(1997). http://adsabs.harvard.edu/abs/1997PhRvA..56.1627G

    [39] Fedrizzi A, Herbst T, Aspelmeyer M et al. Anti-symmetrization reveals hidden entanglement[J]. New Journal of Physics, 11, 103052(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT04000009000011000035000001&idtype=cvips&gifs=Yes

    [40] Basiri-Esfahani S, Myers C R, Armin A et al. Integrated quantum photonic sensor based on Hong-Ou-Mandel interference[J]. Optics Express, 23, 16008-16023(2015). http://dx.doi.org/10.1364/oe.23.016008

    Baihong Li, Zhiguang Xia, Xiao Xiang, Yaqing Jin, Run'ai Quan, Ruifang Dong, Tao Liu, Shougang Zhang. Experimental Method for Fast Measuring the Phase-matched Wavelengths of Entangled Photons by Wavelength-to-Time Mapping[J]. Chinese Journal of Lasers, 2021, 48(3): 0312001
    Download Citation