• Chinese Optics Letters
  • Vol. 23, Issue 1, 011401 (2025)
Yuanhao Zhao1, Qianqian Hao1,2, Zhen Zhang3, Jiahao Dong1..., Luyang Tong1, Jingjing Liu1, Lina Zhao1, Jie Liu1,* and Liangbi Su3|Show fewer author(s)
Author Affiliations
  • 1Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
  • 2Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
  • 3State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
  • show less
    DOI: 10.3788/COL202523.011401 Cite this Article Set citation alerts
    Yuanhao Zhao, Qianqian Hao, Zhen Zhang, Jiahao Dong, Luyang Tong, Jingjing Liu, Lina Zhao, Jie Liu, Liangbi Su, "Passively mode-locked Tm, La:CaF2 crystal lasers near 1.9 µm water absorption band," Chin. Opt. Lett. 23, 011401 (2025) Copy Citation Text show less
    References

    [1] M. Li, Y. Song, C. Zhang et al. Generation and observation of multiple solitons from a mid-infrared ultrafast fiber laser. Chin. Opt. Lett., 22, 031405(2024).

    [2] A. Godard. Infrared (2–12 µm) solid-state laser sources: a review. C.R. Phys., 8, 1100(2007).

    [3] F. M. P. Leclère, M. Schoofs, F. Auger et al. Blood flow assessment with magnetic resonance imaging after 1.9 µm diode laser-assisted microvascular anastomosis. Lasers Surg. Med., 42, 299(2010).

    [4] W. Y. He, P. Yao, D. K. Chu et al. Fabrication and cell-adhesion evaluation of laser-ablated microprotrusion or microgroove on titanium. Chin. J. Lasers, 49, 1002605(2022).

    [5] C. Foehl, D. Breitling, K. Jasper et al. Precision drilling of metals and ceramics with short- and ultrashort-pulsed solid state lasers. International Symposium on Laser Precision Microfabrication(2002).

    [6] A. Ostendorf, F. Siegel. Micro-machining using high energy picosecond laser pulses a cause-effect consideration. ICALEO 2004 - 23rd International Congress on Applications of Laser and Electro-Optics, Congress Proceedings(2004).

    [7] G. M. Hale, M. R. Querry. Optical constants of water in the 200-nm to 200-µm wavelength region. Appl. Opt., 12, 555(1973).

    [8] X. Cao, Q. Zhu, A. Xian et al. Ultrafast Tm:CaYAlO4 laser with pulse regulation and saturation parameters evolution in the 2 µm water absorption band. Opt. Laser Technol., 152, 108096(2022).

    [9] Y. Wang, W. Jing, P. Loiko et al. Sub-10 optical-cycle passively mode-locked Tm:(Lu2/3Sc1/3)2O3 ceramic laser at 2 µm. Opt. Express, 26, 10299(2018).

    [10] Y. Zhao, L. Wang, W. Chen et al. SESAM mode-locked Tm:LuYO3 ceramic laser generating 54-fs pulses at 2048  nm. Appl. Opt., 59, 10493(2020).

    [11] Z. Pan, Y. Wang, Y. Zhao et al. Generation of 84-fs pulses from a mode-locked Tm:CNNGG disordered garnet crystal laser. Photonics Res., 6, 800(2018).

    [12] L. Dong, N. Zhang, H. Ding et al. Femtosecond pulse generation from a Tm:CaYLuAlO4 laser employing a birefringent filter as wavelength selector. Appl. Phys. B, 129, 114(2023).

    [13] N. Zhang, Z. Wang, S. Liu et al. Watt-level femtosecond Tm-doped ‘mixed’ sesquioxide ceramic laser in-band pumped by a Raman fiber laser at 1627 nm. Opt. Express, 30, 23978(2022).

    [14] A. A. Lagatsky, S. Calvez, J. A. Gupta et al. Broadly tunable femtosecond mode-locking in a Tm:KYW laser near 2 µm. Opt. Express, 19, 9995(2011).

    [15] A. Suzuki, S. Kalusniak, S. Ganschow et al. Kerr-lens mode-locked 49-fs Tm3+:YScO3 single-crystal laser at 2.1 µm. Opt. Lett., 48, 4221(2023).

    [16] Q. Na, Z. Huang, M. He et al. Watt-level passively mode-locked Tm:YLF laser at 1.83 µm. Opt. Express, 27, 35230(2019).

    [17] W. Zhou, X. Xu, R. Xu et al. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 µm water absorption region. Photonics Res., 5, 583(2017).

    [18] Q. Na, C. Xu, H. Chen et al. Continuous-wave and mode-locking operation of Tm:YAP lasers near 1.8 µm. Opt. Laser Technol., 142, 107225(2021).

    [19] L. Kong, Z. Qiao, G. Xie et al. Spectroscopic characteristics, continuous-wave and mode-locking laser performances of Tm,Y:CaF2 disordered crystal. Opt. Express, 25, 21267(2017).

    [20] X. Zou, Y. Leng, Y. Li et al. Passively Q-switched mode-locked Tm:LLF laser with a MoS2 saturable absorber. Chin. Opt. Lett., 13, 081405(2015).

    [21] H. Wang, J. Zhu, Z. Gao et al. Femtosecond mode-locked Nd,La:CaF2 disordered crystal laser. Opt. Mater. Express, 6, 2184(2016).

    [22] M. A. Hughes, M. A. Lourenço, J. D. Carey et al. Crystal field analysis of Dy and Tm implanted silicon for photonic and quantum technologies. Opt. Express, 22, 29292(2014).

    [23] Z. Zhang, X. Guo, J. Wang et al. High-efficiency 2 µm continuous-wave laser in laser diode-pumped Tm3+, La3+: CaF2 single crystal. Opt. Lett., 43, 4300(2018).

    [24] Y. Zu, X. Guo, J. Liu et al. Passively Q-switched operation of a novel Tm3+, La3+ co-doped CaF2 single crystal near 2 µm. Infrared Phys. Technol., 102, 103010(2019).

    [25] Q. Hao, W. Liu, Y. Zu et al. Highly efficient dual-wavelength acousto-optically Q-switched Tm,La:CaF2 laser. Chin. Opt. Lett., 20, 111402(2022).

    [26] R. Paschotta, U. Keller. Passive mode locking with slow saturable absorbers. Appl. Phys. B, 73, 653(2001).

    Yuanhao Zhao, Qianqian Hao, Zhen Zhang, Jiahao Dong, Luyang Tong, Jingjing Liu, Lina Zhao, Jie Liu, Liangbi Su, "Passively mode-locked Tm, La:CaF2 crystal lasers near 1.9 µm water absorption band," Chin. Opt. Lett. 23, 011401 (2025)
    Download Citation