• Nano-Micro Letters
  • Vol. 16, Issue 1, 171 (2024)
Yayu Dong1、2, Jian Zhang1、*, Hongyu Zhang1, Wei Wang1, Boyuan Hu1, Debin Xia1, Kaifeng Lin1, Lin Geng3, and Yulin Yang1、**
Author Affiliations
  • 1MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, People’s Republic of China
  • 2School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013 Jiangxi, People’s Republic of China
  • 3School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, People’s Republic of China
  • show less
    DOI: 10.1007/s40820-024-01390-9 Cite this Article
    Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171 Copy Citation Text show less
    References

    [1] Q. Jiang, R. Tirawat, R.A. Kerner, E. Ashley Gaulding, Y. Xian et al., Towards linking lab and field lifetimes of perovskite solar cells. Nature 623, 313–318 (2023).

    [2] Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    [3] National Renewable Energy Laboratory, Best research-cell efficiencies chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf

    [4] H. Luo, P. Li, J. Ma, X. Li, H. Zhu et al., Bioinspired “cage traps” for closed-loop lead management of perovskite solar cells under real-world contamination assessment. Nat. Commun. 14, 4730 (2023).

    [5] H. Zhang, L. Pfeifer, S.M. Zakeeruddin, J. Chu, M. Grätzel, Tailoring passivators for highly efficient and stable perovskite solar cells. Nat. Rev. Chem. 7, 632–652 (2023).

    [6] H. Zhang, J.-W. Lee, G. Nasti, R. Handy, A. Abate et al., Lead immobilization for environmentally sustainable perovskite solar cells. Nature 617, 687–695 (2023).

    [7] H.L. Li, C. Chen, H.Y. Hu, Y. Li, Z.T. Shen et al., Facile RbBr interface modification improves perovskite solar cell efficiency. InfoMat 4, e12322 (2022).

    [8] J.-H. Zhao, X. Mu, L. Wang, Z. Fang, X. Zou et al., Homogeneously large polarons in aromatic passivators improves charge transport between perovskite grains for >24 % efficiency in photovoltaics. Angew. Chem. Int. Ed. 61, e202116308 (2022).

    [9] H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15, 156 (2023).

    [10] M. Yang, T. Tian, Y. Fang, W.-G. Li, G. Liu et al., Reducing lead toxicity of perovskite solar cells with a built-in supramolecular complex. Nat. Sustain. 6, 1455–1464 (2023).

    [11] X. Meng, X. Hu, Y. Zhang, Z. Huang, Z. Xing et al., A biomimetic self-shield interface for flexible perovskite solar cells with negligible lead leakage. Adv. Funct. Mater. 31, 2106460 (2021).

    [12] C.-H. Chen, S.-N. Cheng, L. Cheng, Z.-K. Wang, L.-S. Liao, Toxicity, leakage, and recycling of lead in perovskite photovoltaics. Adv. Energy Mater. 13, 2204144 (2023).

    [13] Y. Zhang, L. Xu, Y. Wu, H. Zhang, F. Zeng et al., Synergetic excess PbI2 and reduced Pb leakage management strategy for 24.28% efficient, stable and eco-friendly perovskite solar cells. Adv. Funct. Mater. 33, 2214102 (2023).

    [14] Y. Zhang, C. Zhou, L. Lin, F. Pei, M. Xiao et al., Gelation of hole transport layer to improve the stability of perovskite solar cells. Nano-Micro Lett. 15, 175 (2023).

    [15] Y. Yang, H.-Y. Zhang, Y. Wang, L.-H. Shao, L. Fang et al., Integrating enrichment, reduction, and oxidation sites in one system for artificial photosynthetic diluted CO2 reduction. Adv. Mater. 35, e2304170 (2023).

    [16] M. Zhang, J.-N. Chang, Y. Chen, M. Lu, T.-Y. Yu et al., Controllable synthesis of COFs-based multicomponent nanocomposites from core-shell to yolk-shell and hollow-sphere structure for artificial photosynthesis. Adv. Mater. 33, e2105002 (2021).

    [17] C. Wu, Y. Liu, H. Liu, C. Duan, Q. Pan et al., Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J. Am. Chem. Soc. 140, 10016–10024 (2018).

    [18] R. Nie, W. Chu, Z. Li, H. Li, S. Chen et al., Simultaneously suppressing charge recombination and decomposition of perovskite solar cells by conjugated covalent organic frameworks. Adv. Energy Mater. 12, 2200480 (2022).

    [19] J. Zhang, J. Duan, Q. Guo, Q. Zhang, Y. Zhao et al., A universal grain “cage” to suppress halide segregation of mixed-halide inorganic perovskite solar cells. ACS Energy Lett. 7, 3467–3475 (2022).

    [20] J. He, H. Liu, F. Zhang, X. Li, S. Wang, In situ synthesized 2D covalent organic framework nanosheets induce growth of high-quality perovskite film for efficient and stable solar cells. Adv. Funct. Mater. 32, 2110030 (2022).

    [21] M.G. Mohamed, C.-C. Lee, A.F.M. EL-Mahdy, J. Lüder, M.-H. Yu et al., Exploitation of two-dimensional conjugated covalent organic frameworks based on tetraphenylethylene with bicarbazole and pyrene units and applications in perovskite solar cells. J. Mater. Chem. A 8, 11448–11459 (2020).

    [22] Z. Li, Z. Zhang, R. Nie, C. Li, Q. Sun et al., Construction of stable donor–acceptor type covalent organic frameworks as functional platform for effective perovskite solar cell enhancement. Adv. Funct. Mater. 32, 2112553 (2022).

    [23] J. Guo, G. Meng, X. Zhang, H. Huang, J. Shi et al., Dual-interface modulation with covalent organic framework enables efficient and durable perovskite solar cells. Adv. Mater. 35, e2302839 (2023).

    [24] X. Gao, Z. Li, J. Guo, G. Meng, B. Wang et al., Covalent organic framework as a precursor additive toward efficient and stable perovskite solar cells. Adv. Energy Sustain. Res. 5, 2300205 (2024).

    [25] C.-C. Chueh, C.-I. Chen, Y.-A. Su, H. Konnerth, Y.-J. Gu et al., Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J. Mater. Chem. A 7, 17079–17095 (2019).

    [26] C.-C. Lee, C.-I. Chen, Y.-T. Liao, K.C.-W. Wu, C.-C. Chueh, Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv. Sci. 6, 1801715 (2019).

    [27] Y. Liu, T. Liu, X. Guo, M. Hou, Y. Yuan et al., Porphyrinic metal–organic framework quantum dots for stable n–i–p perovskite solar cells. Adv. Funct. Mater. 33, 2210028 (2023).

    [28] J. Dou, C. Zhu, H. Wang, Y. Han, S. Ma et al., Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 33, e2102947 (2021).

    [29] U. Ryu, S. Jee, J.-S. Park, I.K. Han, J.H. Lee et al., Nanocrystalline titanium metal–organic frameworks for highly efficient and flexible perovskite solar cells. ACS Nano 12, 4968–4975 (2018).

    [30] J. Zhang, S. Guo, M. Zhu, C. Li, J. Chen et al., Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chem. Eng. J. 408, 127328 (2021).

    [31] S. Wu, Z. Li, M.-Q. Li, Y. Diao, F. Lin et al., 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 15, 934–940 (2020).

    [32] H.-Y. Zhang, Y. Yang, C.-C. Li, H.-L. Tang, F.-M. Zhang et al., A new strategy for constructing covalently connected MOF@COF core–shell heterostructures for enhanced photocatalytic hydrogen evolution. J. Mater. Chem. A 9, 16743–16750 (2021).

    [33] Y. Zheng, X. Wu, J. Liang, Z. Zhang, J. Jiang et al., Downward homogenized crystallization for inverted wide-bandgap mixed-halide perovskite solar cells with 21% efficiency and suppressed photo-induced halide segregation. Adv. Funct. Mater. 32, 2200431 (2022).

    [34] Y. Zhao, H. Tan, H. Yuan, Z. Yang, J.Z. Fan et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nat. Commun. 9, 1607 (2018).

    [35] Y. Dong, W. Shen, W. Dong, C. Bai, J. Zhao et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells. Adv. Energy Mater. 12, 2270082 (2022).

    [36] J. Luo, F. Lin, J. Xia, H. Yang, R. Zhang et al., An efficient and hydrophobic molecular doping in perovskite solar cells. Nano Energy 82, 105751 (2021).

    [37] P. Qin, T. Wu, Z. Wang, L. Xiao, L. Ma et al., Grain boundary and interface passivation with core–shell Au@CdS nanospheres for high-efficiency perovskite solar cells. Adv. Funct. Mater. 30, 1908408 (2020).

    [38] K. Li, L. Zhang, Y. Ma, Y. Gao, X. Feng et al., Au nanocluster assisted microstructural reconstruction for buried interface healing for enhanced perovskite solar cell performance. Adv. Mater. 36, e2310651 (2024).

    [39] P. Guo, H. Zhu, W. Zhao, C. Liu, L. Zhu et al., Interfacial embedding of laser-manufactured fluorinated gold clusters enabling stable perovskite solar cells with efficiency over 24. Adv. Mater. 33, e2101590 (2021).

    [40] X. Jin, Y. Yang, T. Zhao, X. Wu, B. Liu et al., Mitigating potential lead leakage risk of perovskite solar cells by device architecture engineering from exterior to interior. ACS Energy Lett. 7, 3618–3636 (2022).

    [41] W. Zhao, M. Wu, Z. Liu, S. Yang, Y. Li et al., Orientation engineering via 2D seeding for stable 24.83% efficiency perovskite solar cells. Adv. Energy Mater. 13, 2204260 (2023).

    [42] W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022).

    [43] R. Wang, J. Xue, K.L. Wang, Z.K. Wang, Y. Luo et al., Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 366, 1509–1513 (2019).

    [44] W. Zhao, P. Guo, J. Su, Z. Fang, N. Jia et al., Synchronous passivation of defects with low formation energies via terdentate anchoring enabling high performance perovskite solar cells with efficiency over 24%. Adv. Funct. Mater. 32, 2200534 (2022).

    [45] Y. Wang, X.B. Wang, C.H. Wang, R.Y. Cheng, L.X. Zhao et al., Defect suppression and energy level alignment in formamidinium-based perovskite solar cells. J. Energy Chem. 67, 65–72 (2022).

    [46] Y. Dong, S. Gai, J. Zhang, R. Fan, B. Hu et al., Metal-organic frameworks with mixed-ligands strategy as heterogeneous nucleation center to assist crystallization for efficient and stable perovskite solar cells. J. Energy Chem. 77, 1–10 (2023).

    [47] Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao et al., Efficient perovskite solar cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Adv. Mater. (2018).

    [48] Y. Dong, J. Zhang, W. Wang, B. Hu, D. Xia et al., Regulating crystallization and lead leakage of perovskite solar cell via novel polyoxometalate-based metal-organic framework. Small 19, e2301824 (2023).

    [49] H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu et al., Controllable heterogenous seeding-induced crystallization for high-efficiency FAPbI3-based perovskite solar cells over 24. Adv. Mater. 34, e2204366 (2022).

    [50] Q. Cao, T. Wang, J.B. Yang, Y.X. Zhang, Y.K. Li et al., Environmental-friendly polymer for efficient and stable inverted perovskite solar cells with mitigating lead leakage. Adv. Funct. Mater. (2022).

    [51] J. Shi, B. Cohen-Kleinstein, X. Zhang, C. Zhao, Y. Zhang et al., In situ iodide passivation toward efficient CsPbI3 perovskite quantum dot solar cells. Nano-Micro Lett. 15, 163 (2023).

    [52] W. Sheng, J. He, J. Yang, Q. Cai, S. Xiao et al., Multifunctional metal-organic frameworks capsules modulate reactivity of lead iodide toward efficient perovskite solar cells with UV resistance. Adv. Mater. 35, e2301852 (2023).

    [53] Y. Liang, P. Song, H. Tian, C. Tian, W. Tian et al., Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 32, 2110139 (2022).

    [54] Y. Dong, J. Zhang, Y. Yang, J. Wang, B. Hu et al., Multifunctional nanostructured host-guest POM@MOF with lead sequestration capability induced stable and efficient perovskite solar cells. Nano Energy 97, 107184 (2022).

    [55] B. Niu, H. Wu, J. Yin, B. Wang, G. Wu et al., Mitigating the lead leakage of high-performance perovskite solar cells via in situ polymerized networks. ACS Energy Lett. 6, 3443–3449 (2021).

    [56] R.L.Z. Hoye, Preventing lead release from perovskites. Nat. Sustain. 6, 1297–1299 (2023).

    [57] Y.S. Gao, Y.Q. Hu, C.L. Yao, S.F. Zhang, Recent advances in lead-safe perovskite solar cells. Adv. Funct. Mater. (2022).

    [58] H. Zhang, F.T. Eickemeyer, Z. Zhou, M. Mladenović, F. Jahanbakhshi et al., Multimodal host–guest complexation for efficient and stable perovskite photovoltaics. Nat. Commun. 12, 3383 (2021).

    Yayu Dong, Jian Zhang, Hongyu Zhang, Wei Wang, Boyuan Hu, Debin Xia, Kaifeng Lin, Lin Geng, Yulin Yang. Multifunctional MOF@COF Nanoparticles Mediated Perovskite Films Management Toward Sustainable Perovskite Solar Cells[J]. Nano-Micro Letters, 2024, 16(1): 171
    Download Citation