• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 2, 020601 (2024)
Minghui ZHANG, Junli GOU*, Zheng WANG, and Jianqiang SHAN
Author Affiliations
  • School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.020601 Cite this Article
    Minghui ZHANG, Junli GOU, Zheng WANG, Jianqiang SHAN. Operation characteristics of a megawatt nuclear power system with high efficiency and compactness[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020601 Copy Citation Text show less
    References

    [1] GUO Simao, WANG Guanbo, TANG Bin et al. Research on megawatt high efficiency and compact new marine nuclear power plant[J]. China Basic Science, 23, 42-50(2021).

    [2] WANG Zhenlan, GOU Junli, XU Shihao et al. Heat pipe failure accident analysis of a new type of megawatt heat pipe reactor[J]. Nuclear Techniques, 45, 110604(2022).

    [3] QIAN Yong, HOU Mingjun, NI Jian et al. Discussion on power conversion system scheme of heat pipe cooled reactor[J]. China Heavy Equipment, 2022, 7-10, 15.

    [4] El-Geiik M S, Seo J T, Buksa J J. Load-following and reliability studies of an integrated SP-100 system[J]. Journal of Propulsion and Power, 4, 152-156(1988).

    [5] Parlos A G, Onbasioglu F O, Metzger J D. Load-following voltage controller design for a static space nuclear power system[J]. Nuclear Science and Engineering, 136, 227-246(2000).

    [6] El-Genk M S, Tournier J M. DynMo-TE: dynamic simulation model of space reactor power system with thermoelectric converters[J]. Nuclear Engineering and Design, 236, 2501-2529(2006).

    [7] Ge L, Li H Q, Shan J Q. Reliability and loading-following studies of a heat pipe cooled, AMTEC conversion space reactor power system[J]. Annals of Nuclear Energy, 130, 82-92(2019).

    [8] Mcclure P. Design of megawatt power level heat pipe reactors[R](2015).

    [9] Sterbentz J W, Werner J E, Mckellar M G et al. Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report: INL/EXT-16-40741[R](2017). https://www.osti.gov/biblio/1410224

    [10] Zhang X, Sun P. Control system design of supercritical CO2 direct cycle gas fast reactor[C], V009T15A022(2017). https://asmedigitalcollection.asme.org/ICONE/proceedings/ICONE25/57878/Shanghai,%20China/253096

    [11] Dai C H, Song P, Ma C et al. Research on response characteristics and control strategy of the supercritical carbon dioxide power cycle[J]. Processes, 9, 1943(2021).

    [12] Muñoz de Escalona J M, Sánchez D, Chacartegui R et al. Performance analysis of hybrid systems incorporating high temperature fuel cells and closed cycle heat engines at part-load operation[J]. International Journal of Hydrogen Energy, 38, 570-578(2013).

    [13] Wang R, Wang X, Shu G Q et al. Comparison of different load-following control strategies of a sCO2 Brayton cycle under full load range[J]. Energy, 246, 123378(2022).

    [14] Liese E, Albright J, Zitney S A. Startup, shutdown, and load-following simulations of a 10 MWe supercritical CO2 recompression closed Brayton cycle[J]. Applied Energy, 277, 115628(2020).

    [15] Moisseytsev A, Kulesza K P, Sienicki J J. Control system options and strategies for supercritical CO2 cycles: ANL-GENIV-081[R](2009). https://www.osti.gov/biblio/958037

    [16] Sato H, Yan X L, Tachibana Y et al. Load-following operations of VHTR gas-turbine cogeneration system for developing countries[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 4, 17-24(2012).

    [17] Ming Y, Liu K, Zhao F L et al. Dynamic modeling and validation of the 5 MW small modular supercritical CO2 Brayton-Cycle reactor system[J]. Energy Conversion and Management, 253, 115184(2022).

    [18] Carstens N. Control strategies for supercritical carbon dioxide power conversion systems[D/OL](2007). https://dspace.mit.edu/handle/1721.1/41295

    [19] Gao C T, Wu P, Liu W H et al. Development of a bypass control strategy for supercritical CO2 Brayton cycle cooled reactor system under load-following operation[J]. Annals of Nuclear Energy, 151, 107917(2021).

    [20] Du X E, Hu J S, Xia G L. Operation characteristic of supercritical carbon dioxide-cooled reactor system under coordination control scheme[J]. International Journal of Advanced Robotic Systems, 17, 172988142093383(2020).

    [21] XUE Qi, FENG Min, MA Yunduo et al. Study on load operation strategy of supercritical carbon dioxide nuclear power system[J/OL]. Journal of Xi'an Jiaotong University, 135-148(2023). https://kns.cnki.net/kcms/detail//61.1069.T.20230103.1402.006.html

    [22] YUAN Yuan, GOU Junli, SHAN Jianqiang et al. Startup characteristics of heat pipe cooled space reactor[J]. Atomic Energy Science and Technology, 50, 1054-1059(2016).

    [23] Yuan Y, Shan J Q, Zhang B et al. Study on startup characteristics of heat pipe cooled and AMTEC conversion space reactor system[J]. Progress in Nuclear Energy, 86, 18-30(2016).

    [24] Yuan Y, Shan J Q, Zhang B et al. Accident analysis of heat pipe cooled and AMTEC conversion space reactor system[J]. Annals of Nuclear Energy, 94, 706-715(2016).

    [25] Li H Q, Ouyang Z Y, Tian X Y et al. The development of high temperature heat-pipe transient model for system analysis of heat pipe cooled microreactor[J]. Progress in Nuclear Energy, 146, 104145(2022).

    [26] Wu P, Gao C T, Shan J Q. Development and verification of a transient analysis tool for reactor system using supercritical CO2 brayton cycle as power conversion system[J]. Science and Technology of Nuclear Installations, 2018, 1-14(2018).

    [27] Gao C T, Wu P, Shan J Q et al. Preliminary study of system design and safety analysis methodology for supercritical carbon dioxide Brayton cycle direct-cooled reactor system[J]. Annals of Nuclear Energy, 147, 107734(2020).

    [28] Wu P, Gao C T, Huang Y P et al. Supercritical CO2 brayton cycle design for small modular reactor with a thermodynamic analysis solver[J]. Science and Technology of Nuclear Installations, 2020, 1-16(2020).

    Minghui ZHANG, Junli GOU, Zheng WANG, Jianqiang SHAN. Operation characteristics of a megawatt nuclear power system with high efficiency and compactness[J]. NUCLEAR TECHNIQUES, 2024, 47(2): 020601
    Download Citation