• International Journal of Extreme Manufacturing
  • Vol. 3, Issue 3, 35102 (2021)
Yuzhang Wang1、2, Yanquan Geng1、2、*, Guo Li3, Jiqiang Wang1、2, Zhuo Fang1、2, and Yongda Yan1、2
Author Affiliations
  • 1Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
  • 2Center for Precision Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, People’s Republic of China
  • 3Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, People’s Republic of China
  • show less
    DOI: 10.1088/2631-7990/abff19 Cite this Article
    Yuzhang Wang, Yanquan Geng, Guo Li, Jiqiang Wang, Zhuo Fang, Yongda Yan. Study of machining indentations over the entire surface of a target ball using the force modulation approach[J]. International Journal of Extreme Manufacturing, 2021, 3(3): 35102 Copy Citation Text show less
    References

    [1] Sadot O, Smalyuk V A, Delettrez J A, Meyerhofer D D, Sangster T C, Betti R, Goncharov V N and Shvarts D 2015 Observation of self-similar behavior of the 3D, nonlinear Rayleigh–Taylor instability Phys. Rev. Lett. 95 265001

    [2] Mehlhorn T A et al 2003 Recent experimental results on ICF target implosions by Z-pinch radiation sources and their relevance to ICF ignition studies Plasma Phys. Control. Fusion 45 A325

    [3] Weber C, Ali S, Biener J, Celliers P M, Clark D and Haan S W 2018 Simulations of the impact of ablator micro-structure on ICF implosions Proc. 60th Annual Meeting of the APS Division of Plasma Physics (Portland, OR: Bulletin of the American Physical Society)

    [4] Lindl J 1995 Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain Phys. Plasmas 2 3933–4024

    [5] Giraldez E M et al 2016 Machining of Two-dimensional sinusoidal defects on ignition-type capsules to study hydrodynamic instability at the national ignition facility Fusion Sci. Technol. 70 258–64

    [6] Remington B A et al 1997 Supernova hydrodynamics experiments on the Nova laser Phys. Plasmas 4 1994–2003

    [7] Casner A et al 2013 Design and implementation plan for indirect-drive highly nonlinear ablative Rayleigh–Taylor instability experiments on the National Ignition Facility High Energy Density Phys. 9 32–7

    [8] Sinars D B et al 2013 The effect of surface roughness and structure on subsequent magneto-Rayleigh-Taylor instability growth in beryllium liner implosions on Z 2013 Abstracts IEEE Int. Conf. on Plasma Science (San Francisco, CA: IEEE)

    [9] Awati V B, Chavaraddi K B and Gouder P M 2019 Effect of boundary roughness on nonlinear saturation of Rayleigh-Taylor instability in couple-stress fluid Nonlinear Eng. 8 39–45

    [10] Pullin D I 1982 Numerical studies of surface-tension effects in nonlinear Kelvin–Helmholtz and Rayleigh–Taylor instability J. Fluid Mech. 119 507–32

    [11] Glendinning S G et al 2000 Ablation front Rayleigh–Taylor growth experiments in spherically convergent geometry Phys. Plasmas 7 2033–9

    [12] Bates J W, Schmitt A J, Karasik M and Zalesak S T 2016 Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code Phys. Plasmas 23 122701

    [13] Zhao K G, Xue C, Wang L F, Ye W H, Wu J F, Ding Y K, Zhang W Y and He X T 2019 Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry Phys. Plasmas 26 022710

    [14] Guo B S, Sun J Y, Hua Y H, Zhan N W, Jia J G and Chu K P 2020 Femtosecond laser micro/nano-manufacturing: theories, measurements, methods, and applications Nanomanuf. Metrol. 3 26–67

    [15] Lundgren E H and Forsman A C 2009 Laser forming of shaped fill holes in beryllium targets for inertial confinement fusion experiments Fusion Sci. Technol. 55 325–30

    [16] Smalyuk V A, Sadot O, Delettrez J A, Meyerhofer D D, Regan S P and Sangster T C 2005 Fourier-space nonlinear Rayleigh-Taylor growth measurements of 3D laser-imprinted modulations in planar targets Phys. Rev. Lett. 95 215001

    [17] Rahman M A, Rahman M, Kumar A S and Lim H S 2005 CNC microturning: an application to miniaturization Int. J. Mach. Tools Manuf. 45 631–9

    [18] Wu B Q, Sun Y J, Leng Y B, Li W and Dong L H 2015 Research on the fabrication of the curved surface micro-lens for the laser safety 2015 Int. Conf. on Optoelectronics and Microelectronics (ICOM) (Changchun: IEEE)

    [19] Ito S, Iijima D, Hayashi A, Aoyama H and Yamanaka M 2002 Micro turning system: a super small CNC precision lathe for microfactories J. Japan Soc. Grinding Eng. 46 330–3

    [20] Mathew P T, Rodriguez B J and Fang F Z 2020 Atomic and close-to-atomic scale manufacturing: a review on atomic layer removal methods using atomic force microscopy Nanomanuf. Metrol. 3 167–86

    [21] Fang T H and Chang W J 2003 Effects of AFM-based nanomachining process on aluminum surface J. Phys. Chem. Solids 64 913–8

    [22] Lin H Y, Chen H A, Wu Y J, Huang J H and Lin H N 2010 Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications J. Nanosci. Nanotechnol. 10 4482–5

    [23] Zhang H J, Chen S J, Zhou M and Yang Y H 2009 Fast tool servo control for diamond-cutting microstructured optical components J. Vac. Sci. Technol. B 27 1226–9

    [24] Zhou M, Zhang H J and Chen S J 2010 Study on diamond cutting of nonrationally symmetric microstructured surfaces with fast tool servo Mater. Manuf. Process. 25 488–94

    [25] Lu H, Lee D, Kim J and Kim S 2014 Modeling and machining evaluation of microstructure fabrication by fast tool servo-based diamond machining Precis. Eng. 38 212–6

    [26] Takeuchi Y, Yoneyama Y, Ishida T and Kawai T 2009 6-Axis control ultraprecision microgrooving on sculptured surfaces with non-rotational cutting tool CIRP Ann. 58 53–6

    [27] Tseng A A 2011 Removing material using atomic force microscopy with single- and multiple-tip sources Small 7 3409–27

    [28] Yan Y D, Geng T Q and Hu Z J 2015 Recent advances in AFM tip-based nanomechanical machining Int. J. Mach. Tools Manuf. 99 1–18

    [29] Kawasegi N, Takano N, Oka D, Morita Y, Shigeru Y, Kanda K, Takano S, Obata T and Ashida K 2006 Nanomachining of silicon surface using atomic force microscope with diamond tip J. Manuf. Sci. Eng. 128 723–9

    [30] Kobayashi T and Yan J W 2020 Generating nanodot structures on stainless-steel surfaces by cross scanning of a picosecond pulsed laser Nanomanuf. Metrol. 3 105–11

    [31] Zhao X S, Geng Y Q, Li W B, Yan Y D, Hu Z J, Sun T, Liang Y C and Dong S 2012 Fabrication and measurement of nanostructures on the micro ball surface using a modified atomic force microscope Rev. Sci. Instrum. 83 115104

    [32] Elkaseer A and Brousseau E B 2014 Modelling the surface generation process during AFM probe-based machining: simulation and experimental validation Surf. Topogr. 2 025001

    [33] Geng Y Q, Yan Y D, Zhao X S, Hu Z J, Liang Y C, Sun T and Dong S 2013 Fabrication of millimeter scale nanochannels using the AFM tip-based nanomachining method Appl. Surf. Sci. 266 386–94

    [34] Yan Y D, Geng Y Q, Hu Z J, Zhao X S, Yu B W and Zhang Q 2014 Fabrication of nanochannels with ladder nanostructure at the bottom using AFM nanoscratching method Nanoscale Res. Lett. 9 212

    [35] Geng Y Q, Wang Y Z, Yan Y D and Zhao X S 2017 A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball Rev. Sci. Instrum. 88 115109

    [36] Park S S, Mostofa M G, Park C I, Mehrpouya M and Kim S 2014 Vibration assisted nano mechanical machining using AFM probe CIRP Ann. 63 537–40

    [37] Napolitano S, D’Acunto M, Baschieri P, Gnecco E and Pingue P 2012 Ordered rippling of polymer surfaces by nanolithography: influence of scan pattern and boundary effects Nanotechnology 23 475301

    [38] Brousseau E, Al-Musawi R S J and Lebiez D 2015 A hybrid roll-to-roll AFM set-up for high throughput tip-based nano-machining Manuf. Lett. 6 10–3

    [39] Yan Y D, He Y, Geng Y Q, Hu Z J and Li H 2016 Review on AFM tip-based mechanical nanomachining: the influence of the input machining parameters on the outcomes Curr. Nanosci. 12 666–75

    [40] Chen Y L, Cai Y D, Tohyama K, Shimizu Y, Ito S and Gao W 2017 Auto-tracking single point diamond cutting on non-planar brittle material substrates by a high-rigidity force controlled fast tool servo Precis. Eng. 49 253–61

    Yuzhang Wang, Yanquan Geng, Guo Li, Jiqiang Wang, Zhuo Fang, Yongda Yan. Study of machining indentations over the entire surface of a target ball using the force modulation approach[J]. International Journal of Extreme Manufacturing, 2021, 3(3): 35102
    Download Citation