• Acta Physica Sinica
  • Vol. 69, Issue 1, 010503-1 (2020)
Sen-Yue Lou*
DOI: 10.7498/aps.69.20191172 Cite this Article
Sen-Yue Lou. Full reversal symmetric multiple soliton solutions for integrable systems[J]. Acta Physica Sinica, 2020, 69(1): 010503-1 Copy Citation Text show less

Abstract

Multiple soliton solutions are fundamental excitations. There are many kinds of equivalent representations for multiple soliton solutions such as the Hirota forms, Wronskian and/or double Wronskian expressions and Phaffian representations. Recently, in the studies of multi-place nonlocal systems, we find that there are a type of novel but equivalent simple and elegant forms to describe multiple soliton solutions for various integrable systems. In this paper, we mainly review novel types of expressions of multiple soliton solutions for some kinds of nonlinear integrable systems. Meanwhile, some completely new expressions for the Sawada-Kortera equations, the asymmetric Nizhnik-Novikov-Veselov system, the modified KdV equation, the sine-Gordon equation, the Ablowitz-Kaup-Newell-Segue system and the completely discrete H1 equation are firstly given in this paper. New expressions usually possess explicit full reversal symmetries including parity, time reversal, soliton initial position reversal and charge conjugate reversal. These kinds of explicitly symmetric forms are very useful and convenient in the studies on the nonlinear physical problems such as the multi-place nonlocal systems and the resonant structures.
$ u = 2\left(\ln F \right)_{xx}, $(1)

View in Article

$ F = \sum\limits_{\mu = 0,1}\exp\left(\sum\limits_{j = 1}^N\mu_j\xi_j+\sum\limits_{1\leqslant j < l}^N\mu_j\mu_l \theta_{jl}\right), $(2)

View in Article

$\begin{split} & \xi_j = {k}_j\cdot ({x}-{x}_{0j}), \\ & {k}_j = \{k_{j1},\ k_{j2},\ \ldots,\ k_{jd}\},\\ & {x} = \{x_1,\ x_2,\ \ldots,\ x_{d}\}, \end{split}$(3)

View in Article

$ P(D_{ {x}})F\cdot F = 0. $(4)

View in Article

$ D_{ {x}}^nF\cdot G = \left.(\partial_{{x}}-\partial_{{y}})^n F({x})G({y})\right|_{{y} = {x}}. $(5)

View in Article

$ F\rightarrow \beta\exp(Kx+\varOmega t +X_0)F, $(6)

View in Article

$ \xi_j = \eta_j-\frac12\sum\limits_{i = 1}^{j-1}\theta_{ij} -\frac12\sum\limits_{i = j+1}^{N}\theta_{ji}, $(7)

View in Article

$ \eta_j = {k}_j\cdot ({x}-{x}_{0j}), $(8)

View in Article

$ u = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx}, $(9)

View in Article

$ KdV\equiv u_t+u_{xxx}+6uu_x = 0, $(10)

View in Article

$\begin{split} & u = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ & \eta_j = k_j(x-x_{0j})-k_j^3(t-t_{0j}),\end{split}$(11)

View in Article

$ K_\nu = \prod\limits_{i > j}(k_i-\nu_i\nu_jk_j). $(12)

View in Article

$ \eta_j\rightarrow -\eta_j $(13)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x, -t) $(14)

View in Article

$ \Delta(A,\ A) = KdV, $(15)

View in Article

$\begin{split} & A = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ & \eta_j = k_jx-k_j^3t,\end{split} $(16)

View in Article

$ KP\equiv (u_t+u_{xxx}+6uu_x)_x+3\sigma^2u_{yy} = 0,\quad \sigma^2 = \pm 1, $(17)

View in Article

$ \begin{split} u =\, & 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx}, \\ \eta_j =\, & k_j(x-x_{0j})+k_jl_j(y-y_{0j})\\ & -k_j(3 \sigma^2 l_j^2 +k_j^2)(t-t_{0j}), \end{split} $(18)

View in Article

$ K_\nu^2 = \prod\limits_{i > j}\left[(k_i-\nu_i\nu_jk_j)^2 -\sigma^2(l_i-l_j)^2\right]. $(19)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x,\ -y,\ -t) $(20)

View in Article

$ \Delta(A,\ A) = KP, $(21)

View in Article

$\begin{split} & A = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ &\eta_j = k_jx+k_jl_jy-k_j(3 \sigma^2 l_j^2 +k_j^2)t, \end{split}$(22)

View in Article

$ Toda\equiv (u_n+2)u_{n,xx}-u_{n,x}^2+\frac12(u_n+2)^2E^2u_{n-1} = 0, $(23)

View in Article

$ Eu_n = u_{n+1}-u_n. $(24)

View in Article

$\begin{split} & u = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ & \eta_j = k_j(n-n_{0j})+2\sinh \frac{k_j}2(x-x_{0j}),\end{split} $(25)

View in Article

$ K_\nu = \prod\limits_{i > j}\sinh\frac14(k_i-\nu_i\nu_jk_j). $(26)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x, -n) $(27)

View in Article

$ \Delta(A,\ A) = Toda, $(28)

View in Article

$\begin{split} & A = 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ & \eta_j = k_jn+2\sinh \frac{k_j}2x, \end{split}$(29)

View in Article

$\begin{split} SK\equiv \, & u_t-5v_y+(u_{xxxx}+15u^3+15uu_{xx}\\ &+15uv+5v_{xx})_x = 0,\\ u_y =\, & v_x \end{split}$(30)

View in Article

$ \begin{split} u =\, & 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\dfrac{1}{2} \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx}, \\ \eta_j =\, & k_j[(x-x_{0j})+l_j (y-y_{0j})\\ & -(k_j^4+5k_j^2l_j-5l_j^2)(t-t_{0j})], \end{split}$(31)

View in Article

$\begin{split} K_\nu^2 =\, & \prod\limits_{i > j}[k_{ij}^2(k_{ij}^2+\nu_i\nu_j k_ik_j +2l_i+2l_j)\\ & -k_{ij}(k_il_j-\nu_i\nu_jk_jl_i )+(l_i-l_j)^2]. \end{split}$(32)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x,\ -y,\ -t) $(33)

View in Article

$ \Delta(A,\ A) = SK, $(34)

View in Article

$\begin{split} A = \, & 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ \eta_j =\, & k_j[x+l_j y-(k_j^4+5k_j^2l_j-5l_j^2)t], \end{split}$(35)

View in Article

$ ANNV\equiv u_t+(u_{xx}+3uv+av)_x = 0,\quad u_x = v_y $(36)

View in Article

$\begin{split} u =\, & 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ \eta_j =\, & k_j[(x-x_{0j})+l_j (y\!-\!y_{0j})\!-\!(al_j^{-1}+k_j^2)(t\!-\!t_{0j})], \end{split}$(37)

View in Article

$ K_\nu^2 = \prod\limits_{i > j}[a(l_i-l_j)^2-3l_il_j(k_i-\nu_i\nu_j k_j )(k_il_i-\nu_i\nu_j k_jl_j)]. $(38)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x,\ -y,\ -t) $(39)

View in Article

$ \Delta(A,\ A) = ANNV, $(40)

View in Article

$\begin{split} A =\, & 2\left[\ln \sum\limits_{\nu}K_\nu \cosh\left(\frac12 \sum\limits_{j = 1}^N \nu_j\eta_j \right) \right]_{xx},\\ \eta_j =\, & k_j[x+l_jt-(ak_jl_j^{-1}+k_j^2)t], \end{split}$(41)

View in Article

$ u^{MKdV} = \frac12u_{x}^{sG} = {\rm i}\left(\ln \frac{F_-}{F_+} \right)_{x}, $(42)

View in Article

$ F_{\pm} = \sum\limits_{\mu = 0,1}\exp\left(\sum\limits_{j = 1}^N\mu_j\left(\xi_j\pm {\rm i}\frac{{\text{π}}}2\right)+\sum\limits_{1\leqslant j < l}^N\mu_j\mu_l \theta_{jl}\right), $(43)

View in Article

$ \begin{split} &\xi_j = {k}_j\cdot ({x}-{x}_{0j}),\\ & {k}_j = \{k_{j1},\ k_{j2},\ \cdots,\ k_{jd}\},\\ &{x} = \{x_1,\ x_2,\ \cdots,\ x_{d}\}, \end{split}$(44)

View in Article

$ P(D_{ {x}})F_+\cdot F_- = 0, $(45)

View in Article

$ Q(D_{ {x}})(F_+\cdot F_++aF_-\cdot F_-) = 0, $(46)

View in Article

$ P(D_{\vec {x}})F_+\cdot F_- = 0, $(47)

View in Article

$ Q(D_{\vec {x}})F_+\cdot F_- = 0. $(48)

View in Article

$ F_{\pm}\rightarrow \beta\exp\left(Kx+\varOmega t +X_0\pm {\rm i} \frac{M{\text{π}}}2\right)F_{\pm}, $(49)

View in Article

$\begin{split} u^{\rm MKdV} \!=\! \,& \frac12u_x^{sG} \! =\! {\rm i}\!\left[\ln \frac{\displaystyle\sum_{\nu}K_\nu \cosh\left(\dfrac{1}{2} \displaystyle\sum_{j = 1}^N \nu_j\eta_j^- \right)}{\displaystyle\sum_{\nu}K_\nu \cosh\left(\dfrac{1}{2} \sum_{j = 1}^N \nu_j\eta_j^+ \right)}\! \right]_{x},\\ \eta_j^{\pm} = \,& {k}_j\cdot ({x}-{x}_{0j})\pm {\rm i}\frac{{\text{π}}}2\equiv \eta_j\pm {\rm i}\frac{{\text{π}}}2, \\[-12pt] \end{split}$(50)

View in Article

$\begin{split} \, & u^{\rm MKdV} = \frac12u_x^{sG} \\ = & \pm 2\frac{\partial}{\partial x} \tan^{-1}\frac{\displaystyle\sum_{\nu_e}K_{\nu}\sinh\left(\dfrac{1}{2}\displaystyle\sum_{j = 1}^N \nu_j\eta_j\right)}{\displaystyle\sum_{\nu_o}K_{\nu} \cosh\left(\dfrac{1}{2} \sum_{j = 1}^N \nu_j\eta_j\right)},\\ \eta_j =\, & {k}_j\cdot ({x}-{x}_{0j}),\end{split}$(51)

View in Article

$ MKdV\equiv u_t+6u^2u_x+u_{xxx} = 0 $(52)

View in Article

$ \eta_j = k_j(x-x_{0j})-k_j^3(t-t_{0j}), $(53)

View in Article

$ K_\nu \equiv \prod\limits_{i > j}(k_i-\nu_i\nu_jk_j). $(54)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x,\ \ -t) $()

View in Article

$ sG\equiv u_{xt} = \sin(u) $(55)

View in Article

$ \eta_j = k_j\left(x-x_{0j}\right)+k_j^{-1} \left(t-t_{0j}\right), $(56)

View in Article

$ K_\nu \equiv \prod\limits_{i > j}(k_i-\nu_i\nu_jk_j). $(57)

View in Article

$ \Delta(A,\ B) = 0,\ B = A(-x,\ \ -t) $()

View in Article

$ NLS\equiv {\rm i}u_t+u_{xx}+2\sigma|u|^2u = 0, \quad \sigma = \pm1, $(58)

View in Article

$\begin{split} & u = \sqrt{2}\alpha \exp(-{\rm i}\alpha^2 t+{\rm i}\phi_0) \\ & \times\frac{\displaystyle\sum_{\mu}\exp\left(\sum_{j = 1}^{N}\mu_j(\xi_j+2{\rm i}\theta_j) +\sum_{j < l}\mu_j\mu_l\theta_{jl}\right)} {\displaystyle\sum_{\mu}\exp\left[\sum_{j = 1}^{N}\mu_j\xi_j +\sum_{j < l}\mu_j\mu_l\theta_{jl}\right]}, \end{split}$(59)

View in Article

$ \xi_j = \sqrt{2}\alpha \sin(\theta_j)\left(x+\sqrt{2}\alpha \cos(\theta_j)t\right)+\xi_{0j}, $(60)

View in Article

$ \exp\left(\theta_{jl}\right) = \left(\frac{\sin\dfrac{1}{2}(\theta_j-\theta_l)} {\sin\dfrac{1}{2}(\theta_j+\theta_l)}\right)^2, $(61)

View in Article

$ \begin{split} \,& u = \sqrt{2}\alpha \exp\left[-{\rm i}\alpha^2 t+{\rm i}\phi'_0\right]\\&\times \frac{\displaystyle\sum_{\nu}K_\nu \cosh\left[\dfrac{1}{2}\sum_{j = 1}^{N}\nu_j\left(\eta_j+2{\rm i}\theta_j\right) \right]}{\displaystyle\sum_{\nu}K_\nu \cosh\left(\dfrac{1}{2}\sum_{j = 1}^{N}\nu_j\eta_j\right)}, \end{split}$(62)

View in Article

$ \eta_j = \sqrt{2}\alpha \sin(\theta_j)\big[x-x_{0j}+\sqrt{2}\alpha \cos(\theta_j)\left(t-t_{0j}\right)\big], $(63)

View in Article

$ K_\nu = \prod\limits_{l < j}\sin\frac{\theta_j -\nu_j\nu_l\theta_l}2, $(64)

View in Article

$ \Delta(A,\ B) = 0,\ B = A^*(-x,\ \ -t) $()

View in Article

$ AKNS\equiv\left\{\begin{aligned}& {\rm i}u_t+u_{xx}+2\sigma u^2v = 0,\\ & -{\rm i}v_t+v_{xx}+2\sigma v^2u = 0, \end{aligned} \right. \quad \sigma = \pm1, $(65)

View in Article

$\begin{split} & u_{M,N} = a\frac{\Delta_{M,N+1}}{\Delta_{M,N}},\\ & v_{M,N} = \frac{-\sigma\Delta_{M,N-1}}{a\Delta_{M,N}},\\ & \Delta_{m,n} = \det(\Gamma_{m,n}),\\ &1\leqslant N \leqslant M-1,\\ & M\leqslant 1,\end{split} $(66)

View in Article

$ \varGamma_{m,n} = \left( {\begin{array}{cccccccc} 1 & 1& \ldots & 1 & 1 \\ k_1 & k_2& \ldots & k_{m-1} & k_m \\ k_1^2 & k_2^2& \ldots & k_{m-1}^2 & k_m^2 \\ \vdots & \vdots& \vdots & \vdots & \vdots \\ k_1^{n-1} & k_2^{n-1}& \ldots & k_{m-1}^{n-1} & k_m^{n-1} \\ e_1 & e_2& \ldots & e_{m-1} & e_m \\ k_1e_1 & k_2e_2& \ldots & k_{m-1}e_{m-1} & k_me_m \\ k_1^2e_1 & k_2^2e_2& \ldots & k^2_{m-1}e_{m-1} & k^2_me_m \\ \vdots & \vdots& \vdots & \vdots & \vdots \\ k_1^{m-n-1}e_1 & k_2^{m-n-1}e_2& \ldots & k^{m-n-1}_{m-1}e_{m-1} & k^{m-n-1}_me_m \end{array}} \right). $(67)

View in Article

$ \begin{split} &{\text{时空反演}}:~ \{x,\ t\}\rightarrow \{-x,\ -t\},\\ &{\text{孤子初始位置反演}}:~\{x_{0j},\ t_{0j}\}\rightarrow \{-x_{0j},\ -t_{0j}\},\\ &{\text{场交换}}:~u_{M,N}\rightarrow (-1)^Ma^2\sigma v_{M,M-N}. \\[-10pt] \end{split}$(68)

View in Article

$\begin{aligned} & k_{ij}\equiv k_i-k_j,\\ & E_i\equiv \exp[k_j(x-x_{0 j})-{\rm i}k_j^2(t-t_{0 j})],\\ & E_{ij}\equiv E_iE_j,\end{aligned} $()

View in Article

$\begin{aligned}& K_{ijp} = k_{ij}k_{ip}k_{jp},\\ & K_{ijpq} = k_{ij}k_{ip}k_{iq}k_{jp}k_{iq}k_{pq}\end{aligned} $()

View in Article

$\begin{split}& u_{2,1} = \frac{ak_{12}}{E_1+E_2},\\ & v_{2,1} = \frac{\sigma a^{-1} k_{12}}{E_1^{-1}+E_2^{-1}}, \end{split}$(69)

View in Article

$\begin{split} & u_{3,2} = \frac{aK_{123}}{k_{23}E_1+k_{13}E_2+k_{12}E_3}, \\ & v_{3,2} = \frac{ k_{12}E_{12}+k_{13}E_{13}+k_{23}E_{23} } {a\sigma(k_{23}E_1+k_{13}E_2+k_{12}E_3)},\end{split}$(70)

View in Article

$\begin{split} &v_{3,1} = \frac{-\sigma a^{-1}K_{123}}{k_{23}E_1^{-1} +k_{13}E_2^{-1}+k_{12}E_3^{-1}}, \\ & u_{3,1} = -\frac{ a(k_{12}E_{12}^{-1}+k_{13}E_{13}^{-1} +k_{23}E_{23}^{-1}) } {k_{23}E_1^{-1}+k_{13}E_2^{-1}+k_{12}E_3^{-1}},\end{split}$(71)

View in Article

$ \begin{split} & u_{4,3} = \frac{aK_{1234}}{K_{234}E_1+K_{134}E_2 +K_{124}E_3+K_{123}E_4}, \\ & v_{4,3} = \frac{ k_{12}k_{34}(E_{12}+E_{34})+k_{13}k_{24}(E_{13}+E_{24}) +k_{23}k_{14}(E_{23}+E_{14}) } {a\sigma(K_{234}E_1+K_{134}E_2 +K_{124}E_3+K_{123}E_4)}, \end{split}$(72)

View in Article

$ \begin{split} & v_{4,1} = \frac{\sigma a^{-1} K_{1234}}{K_{234}E_1^{-1}+K_{134}E_2^{-1} +K_{124}E_3^{-1}+K_{123}E_4^{-1}}, \\ & u_{4,1} = \frac{ k_{12}k_{34}(E_{12}^{-1}+E_{34}^{-1}) +k_{13}k_{24}(E_{13}^{-1}+E_{24}^{-1}) +k_{23}k_{14}(E_{23}^{-1}+E_{14}^{-1}) } {a^{-1}(K_{234}E_1^{-1}+K_{134}E_2^{-1} +K_{124}E_3^{-1}+K_{123}E_4^{-1})}, \end{split} $(73)

View in Article

$ \begin{split} & u_{4,2} = \frac{-a(K_{234}E_1+K_{134}E_2+K_{124}E_3+K_{123}E_4)} {k_{34}k_{12}(E_{12}+E_{34})+k_{24}k_{13}(E_{13}+E_{24}) +k_{23}k_{14}(E_{14}+E_{23})}, \\ & v_{4,2} = \frac{-a^{-1}\sigma(K_{234}E_1^{-1}+K_{134}E_2^{-1} +K_{124}E_3^{-1}+K_{123}E_4^{-1})} {k_{34}k_{12}(E_{12}^{-1}+E_{34}^{-1}) +k_{24}k_{13}(E_{13}^{-1}+E_{24}^{-1}) +k_{23}k_{14}(E_{14}^{-1}+E_{23}^{-1})}, \end{split}$(74)

View in Article

$ H_1\equiv(u-\hat{\tilde{u}})(\tilde{u}-\hat{u})+q-p = 0 $(75)

View in Article

$\begin{aligned}& u = u(m, \ n),\\ & \tilde{u} = T_1 u = u(m+1, \ n),\\ &\hat{u} = T_2 u = u(m, \ n+1),\\ &\hat{\tilde{u}} = T_2 T_1 u = u(m+1, \ n+1)\end{aligned} $()

View in Article

$ A = an+bm+\gamma-\frac{h}{g} $(76)

View in Article

$ \left\{ \begin{aligned}& g = |\psi,\ T_{3}\psi, \ T_{3}^2\psi,\ \ldots,\ T_3^{N-1}\psi|, \\ & h = |\psi,\ T_{3}\psi, \ \ldots,\ T_3^{N-2}\psi,\ T_3^N\psi|,\\ & \psi = \psi(n,\ m,\ l) = (\psi_1,\ \ldots,\ \psi_n)^T,\\ & T_3\psi = \psi(n,\ m,\ l+1),\\ & \psi_i = \psi_i(n,\ m,\ l) = \rho_i^+(a+k_i)^n(b+k_i)^mk_i^l \\ & \quad\quad +\rho_i^-(a-k_i)^n(b-k_i)^m(-k_i)^l, \end{aligned} \right. $(77)

View in Article

$\begin{split} \sinh (\xi_i) = \, &\left(\frac{a+k_i}{a-k_i}\right)^{n-n_{0i}} \left(\frac{b+k_i}{b-k_i}\right)^{m-m_{0i}}\\& -\left(\frac{a+k_i}{a-k_i}\right)^{n_{0i}-n} \left(\frac{b+k_i}{b-k_i}\right)^{m_{0i}-m}, \end{split}$(78)

View in Article

$\begin{split}\cosh(\xi_i) =\, & \left(\frac{a+k_i}{a-k_i}\right)^{n-n_{0i}} \left(\frac{b+k_i}{b-k_i}\right)^{m-m_{0i}} \\ &+\left(\frac{a+k_i}{a-k_i}\right)^{n_{0i}-n} \left(\frac{b+k_i}{b-k_i}\right)^{m_{0i}-m}. \end{split}$(79)

View in Article

$ \begin{split} & \sinh(\xi_1+ \xi_2) = \sinh(\xi_1)\cosh(\xi_2)+\sinh(\xi_2)\cosh(\xi_1), \\ & \cosh(\xi_1+ \xi_2) = \cosh(\xi_1)\cosh(\xi_2)+\sinh(\xi_2)\sinh(\xi_1). \end{split} $(80)

View in Article

$ u = an+bm+\gamma -\frac{\displaystyle\sum_{\nu}K_{\nu}\sum_{j = 1}^N\nu_jk_j \sinh\left(\sum_{i = 1}^N\dfrac{1}{2}\nu_i\xi_i\right)} {\displaystyle\sum_{\nu}K_{\nu}\cosh\left(\sum_{i = 1}^N\dfrac{1}{2}\nu_i\xi_i\right)}, $(81)

View in Article

$ K_{\nu} = \prod\limits_{i < j}(\nu_i k_i-\nu_jk_j). $()

View in Article

$\begin{aligned} & \{ m,\; n,\; m_{0j},\; n_{0j},\; \gamma,\; u\}\\\rightarrow & \{-m,\; -n,\; {-m_{0j}},\; {-n_{0j}},\;-\gamma,\; -u \}\end{aligned}$()

View in Article

Sen-Yue Lou. Full reversal symmetric multiple soliton solutions for integrable systems[J]. Acta Physica Sinica, 2020, 69(1): 010503-1
Download Citation